Skip to main content

3D Gravity Inversion by Growing Bodies and Shaping Layers at Mt. Vesuvius (Southern Italy)

  • Chapter
  • First Online:
Earth Sciences and Mathematics

Part of the book series: Pageoph Topical Volumes ((PTV))

  • 666 Accesses

Abstract

To improve our knowledge of the structural pattern of Mt. Vesuvius and its magmatic system, which represents one of the three volcanoes located in the Neapolitan area (together with Campi Flegrei and Ischia; southern Italy), we analyze here the Bouguer gravity map that is already available through its interpretation by means of 2.5-dimensional modelling. We have carried out a three-dimensional interpretation using a new and original algorithm, known as ‘Layers’, that has been especially processed for this purpose. Layers works in an automatic and non-subjective way, and allows the definition of the structural settings in terms of several layers, each representing a specific geological formation. The same data are also interpreted in terms of isolated and shallow anomalous density bodies using a well tested algorithm known as ‘Growth’. We focus our inversions on the Mt. Vesuvius volcano, while globally analyzing the entire Neapolitan area, in order to investigate the deep structures, and in particular the deep extended ‘sill’ that has been revealed by seismic tomography.

The final models generally confirm the global setting of the area as outlined by previous investigations, mainly for the shape and depth of the carbonate basement below Mt. Vesuvius. The presence of lateral density contrasts inside the volcano edifice is also shown, which was only hypothesized in the 2.5-dimensional inversion. Moreover, the models allow us to note a high density body that rises from the top of the carbonate basement and further elongates above sea level. This probably represents an uprising of the same basement, which is just below the volcano and which coincides with the VP and VP/VS anomalies detected under the crater. The three-dimensional results also reveal that the two inversion methods provide very similar models, where the high density isolated body in the Growth model can be associated with the rising high density anomaly in the Layers model. Taking into account the density of these modelled bodies, we would also suggest that they represent solidified magma bodies, as suggested by other studies. Finally, we did not clearly detect any deep anomalous body that can be associated with the sill that was suggested by seismic tomography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achauer, U., Berrino, G., Capuano, P., and De Gori, P. (2000), TOMOVES Working Group. Joint inversion of Bouguer gravity and teleseismic delay time data for the Mt. Vesuvius/Campania region’s deeper structure: Idea-strategy-first results, XXV General Assembly of EGS, Nice (France), April 25–29.

    Google Scholar 

  • Achauer, U., Berrino, G., Capuano, P., De Natale, G., Deschamps, A., Chiarabba, C., and Gasparini, P. (1999), Joint interpretation of gravity and seismic tomography data for Mt. Vesuvius, XXII General Assembly of IUGG, Birmingham (UK), July 18–30.

    Google Scholar 

  • Al-Chalabi, M. (1971), Some studies relating to non-uniqueness in gravity and magnetic inverse problem, Geophysics 36(5), 835–855.

    Article  Google Scholar 

  • Auger, E., Gasparini, P., Virieux, J., and Zollo, A. (2001), Seismic evidence of an extended magmatic sill under Mt. Vesuvius, Science, 294, 1510–1512.

    Article  Google Scholar 

  • Balducci, S., Vasellini, M., and Verdiani, G. (1985). Exploration well in the “Ottaviano” Permit, Italy. In Strub, A.S., Ungemach, P., Eds.), European Geothermal Update, Proc. 3rd Int. Seminar on the Results of EC Geothermal Energy Research, Reidel.

    Google Scholar 

  • Barberi, F., Innocenti, F., Lirer, L., Munno, R., Pescatore, T., and Santacroce, R. (1978), The Campanian Ignimbrite: A major prehistoric eruption in the Neapolitan area (Italy), Bull. Volcanol. 41(1), 1–22.

    Article  Google Scholar 

  • Barbosa, V.C.F., Silva, J.B.C., and Medeiros, W.E. (1997), Gravity inversion of basements relief using approximate equality constraints on depths, Geophysics 62(6), 1745–1757.

    Article  Google Scholar 

  • Berrino, G. (1995), Absolute gravimetry and gradiometry on active volcanoes of Southern Italy, Bollettino di Geofisica Teorica ed Applicata XXXVII(146), 131–144.

    Google Scholar 

  • Berrino, G., Corrado, G., and Luongo, G. (1991), Indagini gravimetriche a mare nelle aree vulcaniche napoletane. In Proc. 14th Annual Meeting of the Gruppo Nazionale di Geofisica della Terra Solida, pp. 763–775.

    Google Scholar 

  • Berrino, G., Corrado, G., and Riccardi, U. (1998), Sea gravity data in the Gulf of Naples: A contribution to delineating the structural pattern of the Vesuvian area, J. Volc. Geotherm. Res. 82, 139–150.

    Article  Google Scholar 

  • Berrino, G., Corrado, G., Riccardi, U. (2008), Sea gravity data in the Gulf of Naples: A contribution to delineating the structural pattern of the Campi Flegrei — Ischia sector, J. Volcanol. Geotherm. Res., doi: 10.1016/j.jvolgeores.2008.03.007.

    Google Scholar 

  • Berrino, G., Marson, I., Orlando, L., Balestri, L., Balia, R., Bonci, L., Bozzo, E., Carrozzo, M.T., Cerutti, G., Cesi, C., Ciminale, M., Crespi, M., De Maria, P., Ferri, F., Loddo, M., Luzio, D., Pinna, E., and Rossi, A. (1995), Rete gravimetrica Italiana di ordine zero. Stato di avanzamento. In Proc. of the 14th Annual Meeting of the Gruppo Nazionale di Geofisica della Terra Solida, pp. 453–460.

    Google Scholar 

  • Camacho, A.G., Montesinos, F.G., and Vieira, R. (2000), A 3-D gravity inversion by means of a growing bodies, Geophysics, 65(1), 95–101.

    Article  Google Scholar 

  • Camacho, A.G., Montesinos, F.G., and Vieira, R. (2002), A 3-D gravity inversion tool based on exploration of model possibilities, Comp. Geosci. 28, 191–204.

    Article  Google Scholar 

  • Cameli, G.C., Rendina, M., Puxeddu, M., Rossi, A., Squarci, P., and Taffi, L. (1975), Geothermal Research in Western Campania (Southern Italy). Geological and geophysical results, Proc. 2 U.N. Symp. of Development and Use of Geothermal Resources, San Francisco, CA, pp. 315–328.

    Google Scholar 

  • Carrara, E., Iacobucci, F., Pinna, E., and Rapolla, A. (1973), Gravity and magnetic survey of the Campanian volcanic area, Southern Italy, Boll. Geof. Teor. ed Appl. 15,57, 39–51.

    Google Scholar 

  • Carrozzo, M. T., Luzio, D., Margotta, C., and Quarta, T. (1986), Gravity map of Italy, CNR-Progetto Finalizzato Geodinamica.

    Google Scholar 

  • Cassano, E. and La Torre, P. (1987), Geophysics. In (Santacroce R., ed.) Somma Vesuvius, CNR, Quad. Ric. Sci. 114(8), 175–196.

    Google Scholar 

  • Chakraborty, K. and Argawal, B.N.P. (1992), Mapping of crustal discontinuities by wavelength filtering of the gravity field, Geophys. Prospect. 40, 801–822.

    Article  Google Scholar 

  • Civetta, L., D’Antonio, M., De Lorenzo, S., Di Renzo, V., and Gasparini, P. (2004), Thermal and geochemical constraints on the ‘deep’ magmatic structure of Mt. Vesuvius, J. Volcanol. Geoth. Res., 133, 1–12.

    Article  Google Scholar 

  • Cortini, M.R. and Scandone, P. (1982), The feeding system of Vesuvius between 1754 and 1944, J. Volcanol. Geotherm. Res. 12, 393–400.

    Article  Google Scholar 

  • Cubellis, E., Ferri, M., and Luongo, G. (1995), Internal structures of Campi Flegrei caldera by gravimetric data, J. Volcanol. Geotherm. Res. 65, 147–156.

    Article  Google Scholar 

  • De Natale, G., Troise, C., Trigila, R., Dolfi, D., and Chiarabba, C. (2004), Seismicity and 3-D substructure at Somma-Vesuvius volcano: Evidence for magma quenching, Earth and Planet. Sci. Lett., 221, 181–196.

    Article  Google Scholar 

  • Ferri, M., Cudellis, E., Luongo, G. (1990), Strutture crostali del graben della Piana Campana da indagini gravimetriche, Proc. XI Meeting G.N.G.T.S., C.N.R., I, 737–747.

    Google Scholar 

  • Fedi, M. (1988), Spectral expansion inversion of gravity data for 21/2D stuctures, Boll. Geof. Teor. Appl. 21(121), 25–39.

    Google Scholar 

  • Finetti, I. and Del Ben, A. (1986) Geophysical study of the tyrrhenian opening. Boll. Geof. Teor. Appl. XXVIII(11), 75–155.

    Google Scholar 

  • Finetti I. and Morelli C. (1974) Esplorazione di sismica a riflessione dei Golfi di Napoli e Pozzuoli. Boll. di Geof. Teor. Appl. 16, 62–63.

    Google Scholar 

  • Gallardo-Delgado, L.A., Perez-Flores, M.A., and Gomez-Trevino, E. (2003), A versatile algorithm for joint inversion of gravity and magnetic data, Geophysics 68, 949–959.

    Article  Google Scholar 

  • Götze, H.-J. and Lahmeyer, B. (1988), Application of three-dimensional interactive modeling in gravity and magnetics, Geophysics Vol. 53, No. 8, 1096–1108.

    Article  Google Scholar 

  • Luongo, G., Ferri, M., Cubellis, E., Grimaldi, M., and Orbizzo, F. (1988), Struttura superficial della Piana Campana: Interpretazione del profilo Garigliano-Campi Flegrei. Atti del VII Convegno Nazionale G.N.G.T.S., C.N.R., 1121–1128.

    Google Scholar 

  • Marzocchi, W., Scandone, R., and Mulargia, F. (1993), The tectonic setting of Mount Vesuvius and the correlation between its eruptions and earthquakes of the Southern Appennines, J. Volcanol. Geotherm. Res. 58, 27–41.

    Article  Google Scholar 

  • Moritz, H. (1984), Geodetic reference system 1980, In (Tscherning, ed.), The Geodesist’s Handbook. C.C. Bull. Geod. 58, 388–398.

    Google Scholar 

  • Nunziata, C., Natale, M., Luongo, G., and Panza, G.F. (2006), Magma reservoir at Mt. Vesuvius: Size of the hot, partially molten, crustal material detected depper than 8 km, Earth and Planet. Sci. Lett., 242, 51–57.

    Article  Google Scholar 

  • Oliveri Del Castillo, A. (1966). Some gravimetric considerations on the Campanian eruptive and sedimentary basin (residual anomalies of (n-1)th order. Annali Oss. Ves., S VI, VIII, 112–137.

    Google Scholar 

  • Pedersen, L.B. (1979), Constrained inversion of potential field data, Geophys. Prospect. 27, 726–748.

    Article  Google Scholar 

  • Pick, M., Picha, J., and Vyskôcil, V., Theory of the Earths gravity field (Elsevier, New York (1973)) 538 pp.

    Google Scholar 

  • Radhakrishna Murthy, I.V. and Jagannadha Rao, S. (1989), A FORTRAN 77 program for inverting gravity anomalies of two-dimensional basement structures, Comp. Geosci., 15-7, 1149–1156.

    Article  Google Scholar 

  • Rama Rao, P., Swamy, K.V., and Radhakrishna Murthy, I.V. (1999), Inversion of gravity anomalies of three-dimensional density interface, Comp. Geosci. 25, 887–896.

    Article  Google Scholar 

  • René, R.M. (1986), Gravity inversion using open, reject, and “shape-of-anomaly” fill criteria, Geophysics 51,4, 988–994.

    Article  Google Scholar 

  • Rosi, M., Santacroce, R., and Sheridan, M.F. (1987), Volcanic hazard. In Somma Vesuvius, (ed. R. Santacroce) Quad. Ric. Sci. 114, 197–220.

    Google Scholar 

  • Rothman, D.H. (1985), Nonlinear inversion, statistical mechanics, and residual statics estimation, Geophysics 50(12), 2784–2796.

    Article  Google Scholar 

  • Rousseeuw, P.J. and Leroy, A.M., Robust Regression and Outlier Detection (John Wiley & Sons, New York (1987)) 327 pp.

    Book  Google Scholar 

  • Santacroce, R. (1987), Somma-Vesuvius, Quaderni de “La ricerca Scientifica” C.N.R. 114(8), 251.

    Google Scholar 

  • Scala, O. (2002), Assetto strutturale della Piana Campana dall’analisi di dati gravimetrici, Ph.D Thesis in Geophysics and Volcanology, University of Naples, Tutors: Corrado G. and Berrino G., Naples.

    Google Scholar 

  • Silva, J.B.C. and Hohmann, G.W. (1983), Nonlinear magnetic inversion using a random search method, Geophysics, 46(12), 1645–1658.

    Article  Google Scholar 

  • Tarantola, A., The inverse problem theory: Methods for data fitting and model parameter estimation (Elsevier, Amsterdam (1988)) 613 pp.

    Google Scholar 

  • Tondi, R., and De Franco, R. (2003), Three-dimensional modeling of Mount Vesuvius with sequential integrated inversion, J. Geophys. Res. 108(B5), 2256, doi: 10.1029/2001JB001578.

    Article  Google Scholar 

  • Tondi, R., and De Franco, R. (2006), Accurate assessment of 3D crustal velocity and density parameters: Application to Vesuvius data sets, Phys. Earth Planet. Interiors, 159, 183–201.

    Article  Google Scholar 

  • Won, J. and Bevis, M. (1987), Computing the gravitational and magnetic anomalies due to a polygon: Algorithms and Fortran subroutines, Geophysics 52,(2), 232–238.

    Article  Google Scholar 

  • Zollo, A., Gasparini, P., Virieux, J., De Natale, G., Biella, G., Boschi, E., Capuano, P., De Franco, R., Dell’Aversana, P., De Matteis, R., Guerra, I., Iannaccone, G., Le Meur, H., Mirabile, L., and Vilardo, G. (1996), Seismic evidence for a low velocity zone in the upper crust beneath Mt. Vesuvius, Science 274(5287), 592–594.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Verlag, Basel

About this chapter

Cite this chapter

Berrino, G., Camacho, A.G. (2008). 3D Gravity Inversion by Growing Bodies and Shaping Layers at Mt. Vesuvius (Southern Italy). In: Camacho, A.G., Díaz, J.I., Fernández, J. (eds) Earth Sciences and Mathematics. Pageoph Topical Volumes. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8907-9_6

Download citation

Publish with us

Policies and ethics