Skip to main content

The hygiene hypothesis and Type 1 diabetes

  • Chapter
The Hygiene Hypothesis and Darwinian Medicine

Part of the book series: Progress in Inflammation Research ((PIR))

  • 1201 Accesses

Abstract

The incidence of some autoimmune diseases is increasing dramatically in the developed world. For example, the incidence of the autoimmune disease, Type 1 diabetes (T1D), is increasing in the UK at a rate of 4% per annum; faster than can be accounted for by genetic change. In the case of T1D, as for many autoimmune diseases, the development of the disease is known to have a genetic component with many genes playing a role in governing the development of disease [1]. However, the development of Type 1 diabetes is not wholly governed by genetics and a role for environmental factors is shown by the 40% concordance rate for development of T1D in identical twins. This lack of 100% concordance in identical twins which is indicative of environmental effects acting on a genetic background is also seen for some other autoimmune diseases such as multiple sclerosis (MS) and systemic lupus erythematosus (SLE). There has been considerable interest in analysing the basis for the dramatic rise in incidence of T1D in the developed world with particular emphasis being placed on the role that infection might play in exacerbating or preventing onset of this autoimmune condition. The evidence that infection may play a role in the prevention of T1D is discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Redondo MJ, Fain PR, Eisenbarth GS (2001) Genetics of type 1A diabetes. Recent Prog Horm Res 56: 69–89

    Article  CAS  PubMed  Google Scholar 

  2. Hermanowski J, Bouzigon E, Forabosco P, Ng MY, Fisher SA, Lewis CM (2007) Metaanalysis of genome-wide linkage studies for multiple sclerosis, using an extended GSMA method. Eur J Hum Genet 15: 703–710

    Article  CAS  PubMed  Google Scholar 

  3. Hakonarson H, Grant SF, Bradfield JP, Marchand L, Kim CE, Glessner JT, Grabs R, Casalunovo T, Taback SP Frackelton EC et al (2007) A genome-wide association study identifies KIA A0350 as a type 1 diabetes gene. Nature 448: 591–594

    Article  CAS  PubMed  Google Scholar 

  4. Hafler DA, Compston, A, Sawcer S, Lander ES, Daly MJ, De Jager PL de Bakker PI, Gabriel SB, Mirel DB, Ivinson AJ et al (2007) Risk alleles for multiple sclerosis identified by a genomewide study. N Engl J Med 357: 851–862

    Article  CAS  PubMed  Google Scholar 

  5. (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447: 661–678

    Google Scholar 

  6. Yung R, Chang S, Hemati N, Johnson K, Richardson B (1997) Mechanisms of drug-induced lupus. IV. Comparison of procainamide and hydralazine with analogs in vitro and in vivo. Arthritis Rheum 40: 1436–1443

    Article  CAS  PubMed  Google Scholar 

  7. Cooke A, Lydyard PM (1981) The role of T cells in autoimmune diseases Pathol Res Pract 171: 173–196

    CAS  PubMed  Google Scholar 

  8. Strickland FM, Richardson BC (2008) Epigenetics in human autoimmunity. Epigenetics in autoimmunity — DNA methylation in systemic lupus erythematosus and beyond. Autoimmunity 41: 278–286

    Article  CAS  PubMed  Google Scholar 

  9. Yoon JW, Austin M, Onodera T, Notkins AL (1979) Isolation of a virus from the pancreas of a child with diabetic ketoacidosis. N Engl J Med 300: 1173–1179

    CAS  PubMed  Google Scholar 

  10. Sarchielli P, Trequattrini A, Usai F, Murasecco D, Gallai V (1993) Role of viruses in the etiopathogenesis of multiple sclerosis. Acta Neurol (Napoli) 15: 363–381

    CAS  Google Scholar 

  11. Clark D (2004) Human herpesvirus type 6 and multiple sclerosis. Herpes 11 (Suppl 2): 112A–119A

    PubMed  Google Scholar 

  12. Green J, Casabonne D, Newton R (2004) Coxsackie B virus serology and Type 1 diabetes mellitus: a systematic review of published case-control studies. Diabet Med 21: 507–514

    Article  CAS  PubMed  Google Scholar 

  13. Christensen T (2006) The role of EBV in MS pathogenesis. Int MS J 13: 52–57

    CAS  PubMed  Google Scholar 

  14. Drescher KM, Tracy SM (2008) The CVB and etiology of type 1 diabetes. Curr Top Microbiol Immunol 323: 259–274

    Article  CAS  PubMed  Google Scholar 

  15. Filippi CM, von Herrath MG (2008) Viral trigger for type 1 diabetes: pros and cons. Diabetes 57: 2863–2871

    Article  CAS  PubMed  Google Scholar 

  16. Lincoln JA, Hankiewicz K, Cook SD (2008) Could Epstein-Barr virus or canine distemper virus cause multiple sclerosis? Neurol Clin 26: 699–715, viii

    Article  PubMed  Google Scholar 

  17. Toniolo A, Onodera T, Jordan G, Yoon JW, Notkins AL (1982) Virus-induced diabetes mellitus. Glucose abnormalities produced in mice by the six members of the Coxsackie B virus group. Diabetes 31: 496–499

    Article  CAS  PubMed  Google Scholar 

  18. Coulson BS, Witterick PD, Tan Y, Hewish MJ, Mountford JN, Harrison LC, Honeyman MC (2002) Growth of rotaviruses in primary pancreatic cells. J Virol 76: 9537–9544

    Article  CAS  PubMed  Google Scholar 

  19. Onodera T, Jenson AB, Yoon JW, Notkins AL (1978) Virus-induced diabetes mellitus: reovirus infection of pancreatic beta cells in mice. Science 201: 529–531

    Article  CAS  PubMed  Google Scholar 

  20. Serreze DV, Leiter EH, Kuff EL, Jardieu P, Ishizaka K (1988) Molecular mimicry between insulin and retroviral antigen p73. Development of cross-reactive autoantibodies in sera of NOD and C57BL/KsJ db/db mice. Diabetes 37: 351–358

    Article  CAS  PubMed  Google Scholar 

  21. Honeyman MC, Stone NL, Harrison LC (1998) T-cell epitopes in type 1 diabetes autoantigen tyrosine phosphatase IA-2: potential for mimicry with rotavirus and other environmental agents. Mol Med 4: 231–239

    CAS  PubMed  Google Scholar 

  22. Vreugdenhil GR, Geluk A, Ottenhoff TH, Melchers WJ, Roep BO, Galama JM (1998) Molecular mimicry in diabetes mellitus: the homologous domain in coxsackie B virus protein 2C and islet autoantigen GAD65 is highly conserved in the coxsackie B-like enteroviruses and binds to the diabetes associated HLA-DR3 molecule. Diabetologia 41: 40–46

    Article  CAS  PubMed  Google Scholar 

  23. Knip M, Siljander H (2008) Autoimmune mechanisms in type 1 diabetes. Autoimmun Rev 7: 550–557

    Article  CAS  PubMed  Google Scholar 

  24. Goldfarb MF (2008) Relation of time of introduction of cow milk protein to an infant and risk of type-1 diabetes mellitus. J Proteome Res 7: 2165–2167

    Article  CAS  PubMed  Google Scholar 

  25. Fort P, Lanes R, Dahlem S, Recker B, Weyman-Daum M, Pugliese M, Lifshitz F (1986) Breast feeding and insulin-dependent diabetes mellitus in children. J Am Coll Nutr 5: 439–441

    CAS  PubMed  Google Scholar 

  26. Martin JM, Trink B, Daneman D, Dosch HM, Robinson B (1991) Milk proteins in the etiology of insulin-dependent diabetes mellitus (IDDM). Ann Med 23: 447–452

    Article  CAS  PubMed  Google Scholar 

  27. Rosenbauer J, Herzig P, Giani G (2008) Early infant feeding and risk of type 1 diabetes mellitus-a nationwide population-based case-control study in pre-school children. Diabetes Metab Res Rev 24: 211–222

    Article  CAS  PubMed  Google Scholar 

  28. Schrezenmeir J, Jagla A (2000) Milk and diabetes. J Am Coll Nutr 19: 176S–190S

    CAS  PubMed  Google Scholar 

  29. Wasmuth HE, Kolb H (2000) Cow’s milk and immune-mediated diabetes. Proc Nutr Soc 59: 573–579

    Article  CAS  PubMed  Google Scholar 

  30. Banting FG, Best CH (1922) The internal secretion of the pancreas. Laboratory and Clinical Medicine 7: 465–480

    Google Scholar 

  31. Poolman EM, Galvani AP (2007) Evaluating candidate agents of selective pressure for cystic fibrosis. J R Soc Interface 4: 91–98

    Article  PubMed  Google Scholar 

  32. Weatherall DJ, Clegg JB (2002) Genetic variability in response to infection: malaria and after. Genes Immun 3: 331–337

    Article  CAS  PubMed  Google Scholar 

  33. Gale EA (2002) The rise of childhood type 1 diabetes in the 20th century. Diabetes 51: 3353–3361

    Article  CAS  PubMed  Google Scholar 

  34. Strachan DP (1989) Hay fever, hygiene, and household size. BMJ 299: 1259–1260

    Article  CAS  PubMed  Google Scholar 

  35. Cooke A, Tonks P, Jones FM, O’Shea H, Hutchings P, Fulford AJ, Dunne DW (1999) Infection with Schistosoma mansoni prevents insulin dependent diabetes mellitus in non-obese diabetic mice. Parasite Immunol 21: 169–176

    Article  CAS  PubMed  Google Scholar 

  36. Raine T, Zaccone P, Dunne DW, Cooke A (2004) Can helminth antigens be exploited therapeutically to downregulate pathological Th1 responses?, Curr Opin Investig Drugs 5: 1184–1191

    CAS  PubMed  Google Scholar 

  37. Kikutani H, Makino S (1992) The murine autoimmune diabetes model: NOD and related strains. Adv Immunol 51: 285–322

    Article  CAS  PubMed  Google Scholar 

  38. Harada M, Kishimoto Y, Makino S (1990) Prevention of overt diabetes and insulitis in NOD mice by a single BCG vaccination. Diabetes Res Clin Pract 8: 85–89

    Article  CAS  PubMed  Google Scholar 

  39. Castro AP, Esaguy N, Aguas AP (1993) Effect of mycobacterial infection in the lupusprone MRL/lpr mice: enhancement of life span of autoimmune mice, amelioration of kidney disease and transient decrease in host resistance. Autoimmunity 16: 159–166

    Article  CAS  PubMed  Google Scholar 

  40. Qin HY, Sadelain MW, Hitchon C, Lauzon J, Singh B (1993) Complete Freund’s adjuvant-induced T cells prevent the development and adoptive transfer of diabetes in nonobese diabetic mice. J Immunol 150: 2072–2080

    CAS  PubMed  Google Scholar 

  41. Baxter AG, Horsfall AC, Healey D, Ozegbe P, Day S, Williams DG, Cooke A (1994) Mycobacteria precipitate an SLE-like syndrome in diabetes-prone NOD mice. Immunology 83: 227–231

    CAS  PubMed  Google Scholar 

  42. Bras A, Aguas AP (1996) Diabetes-prone NOD mice are resistant to Mycobacterium avium and the infection prevents autoimmune disease. Immunology 89: 20–25

    Article  CAS  PubMed  Google Scholar 

  43. Zaccone P, Fehervari Z, Jones FM, Sidobre S, Kronenberg M, Dunne DW, Cooke A (2003) Schistosoma mansoni antigens modulate the activity of the innate immune response and prevent onset of type 1 diabetes. Eur J Immunol 33: 1439–1449

    Article  CAS  PubMed  Google Scholar 

  44. Zaccone P, Raine T, Sidobre S, Kronenberg M, Mastroeni P, Cooke A (2004) Salmonella typhimurium infection halts development of type 1 diabetes in NOD mice. Eur J Immunol 34: 3246–3256

    Article  CAS  PubMed  Google Scholar 

  45. Raine T, Zaccone P, Mastroeni P, Cooke A (2006) Salmonella typhimurium infection in nonobese diabetic mice generates immunomodulatory dendritic cells able to prevent type 1 diabetes. J Immunol 177: 2224–2233

    CAS  PubMed  Google Scholar 

  46. Kane CM, Cervi L, Sun J, McKee AS, Masek KS, Shapira S, Hunter CA, Pearce EJ (2004) Helminth antigens modulate TLR-initiated dendritic cell activation. J Immunol 173: 7454–7461

    CAS  PubMed  Google Scholar 

  47. Beaudoin L, Laloux V, Novak J, Lucas B, Lehuen A (2002) NKT cells inhibit the onset of diabetes by impairing the development of pathogenic T cells specific for pancreatic beta cells. Immunity 17: 725–736

    Article  CAS  PubMed  Google Scholar 

  48. Naumov YN, Bahjat KS, Gausling R, Abraham R, Exley MA, Koezuka Y, Balk SB, Strominger JL, Clare-Salzer M, Wilson SB (2001) Activation of CD1d-restricted T cells protects NOD mice from developing diabetes by regulating dendritic cell subsets. Proc Natl Acad Sci USA 98: 13838–13843

    Article  CAS  PubMed  Google Scholar 

  49. Sharif S, Arreaza GA, Zucker P, Mi QS, Sondhi J, Naidenko OV, Kronenberg M, Koezuka Y, Delovitch TL, Gombert JM et al (2001) Activation of natural killer T cells by alpha-galactosylceramide treatment prevents the onset and recurrence of autoimmune Type 1 diabetes. Nat Med 7: 1057–1062

    Article  CAS  PubMed  Google Scholar 

  50. Dunne DW, Cooke A (2005) A worm’s eye view of the immune system: consequences for evolution of human autoimmune disease. Nat Rev Immunol 5: 420–426

    Article  CAS  PubMed  Google Scholar 

  51. La Flamme AC, Ruddenklau K, Backstrom BT (2003) Schistosomiasis decreases central nervous system inflammation and alters the progression of experimental autoimmune encephalomyelitis. Infect Immun 71: 4996–5004

    Article  PubMed  CAS  Google Scholar 

  52. Sewell D, Qing Z, Reinke E, Elliot D, Weinstock J, Sandor M, Fabry Z (2003) Immunomodulation of experimental autoimmune encephalomyelitis by helminth ova immunization. Int Immunol 15: 59–69

    Article  CAS  PubMed  Google Scholar 

  53. Mattsson L, Larsson P, Erlandsson-Harris H, Klareskog L, Harris RA (2000) Parasitemediated down-regulation of collagen-induced arthritis (CIA) in DA rats. Clin Exp Immunol 122: 477–483

    Article  CAS  PubMed  Google Scholar 

  54. Costalonga M, Hodges JS, Herzberg MC (2002) Streptococcus sanguis modulates type II collagen-induced arthritis in DBA/1J mice. J Immunol 169: 2189–2195

    CAS  PubMed  Google Scholar 

  55. Khan WI, Blennerhasset PA, Varghese AK Chowdhury SK, Omsted P, Deng Y, Collins SM (2002) Intestinal nematode infection ameliorates experimental colitis in mice. Infect Immun 70: 5931–5937

    Article  CAS  PubMed  Google Scholar 

  56. Elliott DE, Li J, Blum A, Metwali A, Qadir K, Urban JF, Jr., Weinstock JV (2003) Exposure to schistosome eggs protects mice from TNBS-induced colitis. Am J Physiol Gastrointest Liver Physiol 284: G385–391

    CAS  PubMed  Google Scholar 

  57. Maizels RM, Yazdanbakhsh M (2003) Immune regulation by helminth parasites: cellular and molecular mechanisms. Nat Rev Immunol 3: 733–744

    Article  CAS  PubMed  Google Scholar 

  58. McInnes IB, Leung BP, Harnett M, Gracie JA, Liew FY, Harnett W (2003) A novel therapeutic approach targeting articular inflammation using the filarial nematode-derived phosphorylcholine-containing glycoprotein ES-62. J Immunol 171: 2127–2133

    CAS  PubMed  Google Scholar 

  59. Mangan NE, Fallon RE, Smith P, van Rooijen N, McKenzie AN, Fallon PG (2004) Helminth infection protects mice from anaphylaxis via IL-10-producing B cells. J Immunol. 173: 6346–6356

    CAS  PubMed  Google Scholar 

  60. Wohlleben G, Trujillo C, Muller J, Ritze Y, Grunewald S, Tatsch U, Erb KJ (2004) Helminth infection modulates the development of allergen-induced airway inflammation. Int Immunol 16: 585–596

    Article  CAS  PubMed  Google Scholar 

  61. Harnett W, Harnett MM (2006) Filarial nematode secreted product ES-62 is an anti-inflammatory agent: therapeutic potential of small molecule derivatives, and ES-62 peptide mimetics. Clin Exp Pharmacol Physiol 33 511–518

    Article  CAS  PubMed  Google Scholar 

  62. Saunders KA, Raine T, Cooke A, Lawrence CE (2007) Inhibition of autoimmune type 1 diabetes by gastrointestinal helminth infection. Infect Immun 75: 397–407

    Article  CAS  PubMed  Google Scholar 

  63. Smith P, Mangan NE, Walsh CM, Fallon RE, McKenzie AN, van Rooijen N, Fallon PG (2007) Infection with a helminth parasite prevents experimental colitis via a macrophage-mediated mechanism. J Immunol 178: 4557–4566

    CAS  PubMed  Google Scholar 

  64. Correale J, Farez M (2007) Association between parasite infection and immune responses in multiple sclerosis. Ann Neurol 61: 97–108

    Article  CAS  PubMed  Google Scholar 

  65. Elliott DE, Setiawan T, Metwali A, Blum A, Urban JF, Jr., Weinstock JV (2004) Heligmosomoides polygyrus inhibits established colitis in IL-10-deficient mice. Eur J Immunol 34: 2690–2698

    Article  CAS  PubMed  Google Scholar 

  66. Summers RW, Elliott DE, Qadir K, Urban JF, Jr., Thompson R, Weinstock JV (2003) Trichuris suis seems to be safe and possibly effective in the treatment of inflammatory bowel disease. Am J Gastroenterol 98: 2034–2041

    Article  PubMed  Google Scholar 

  67. Summers RW, Elliott DE, Urban JF, Jr., Thompson R, Weinstock JV (2005) Trichuris suis therapy in Crohn’s disease. Gut 54: 87–90

    Article  CAS  PubMed  Google Scholar 

  68. Summers RW, Elliott DE, Urban JF, Jr., Thomspon RA, Weinstock JV (2005) Trichuris suis therapy for active ulcerative colitis: a randomized controlled trial. Gastroenterology 128: 825–832

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Cooke, A. (2009). The hygiene hypothesis and Type 1 diabetes. In: Rook, G.A.W. (eds) The Hygiene Hypothesis and Darwinian Medicine. Progress in Inflammation Research. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8903-1_10

Download citation

Publish with us

Policies and ethics