Skip to main content

Validated Computations for Fundamental Solutions of Linear Ordinary Differential Equations

  • Conference paper
  • First Online:
Inequalities and Applications

Part of the book series: International Series of Numerical Mathematics ((ISNM,volume 157))

Abstract

We present a method to enclose fundamental solutions of linear ordinary differential equations, especially for a one dimensional Schrödinger equation which has a periodic potential. Our method is based on Floquet theory and Nakao’s verification method for nonlinear equations. We show how to enclose fundamental solutions together with characteristic exponents and give a numerical example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.S.P. Eastham, The Spectral Theory of Periodic Differential Equations, Scottish Academic Press, 1973.

    Google Scholar 

  2. K. Nagatou, A numerical method to verify the elliptic eigenvalue problems including a uniqueness property, Computing 63 (1999), 109–130.

    Article  MathSciNet  Google Scholar 

  3. M.T. Nakao and Y. Watanabe, An efficient approach to the numerical verification for solutions of the elliptic differential equations, Numerical Algorithms 37 (2004), 311–323.

    Article  MathSciNet  Google Scholar 

  4. M.T. Nakao, K. Hashimoto and Y. Watanabe, A numerical method to verify the invertibility of linear elliptic operators with applications to nonlinear problems, Computing 75(1) (2005), 1–14.

    Article  MathSciNet  Google Scholar 

  5. M.T. Nakao, N. Yamamoto and K. Nagatou, Numerical Verifications for eigenvalues of second-order elliptic operators, Japan Journal of Industrial and Applied Mathematics, 16(3) (1999), 307–320.

    Article  MathSciNet  Google Scholar 

  6. K. Nagatou, N. Yamamoto and M.T. Nakao, An approach to the numerical verification of solutions for nonlinear elliptic problems with local uniqueness, Numerical Functional Analysis and Optimization 20(5 & 6) (1999), 543–565.

    Article  MathSciNet  Google Scholar 

  7. K. Nagatou, K. Hashimoto, and M.T. Nakao, Numerical verification of stationary solutions for Navier-Stokes problems, Journal of Computational and Applied Mathematics 199 (2007) 445–451.

    Article  MathSciNet  Google Scholar 

  8. M.H. Schultz, Spline Analysis, Prentice-Hall, London, 1973.

    MATH  Google Scholar 

  9. K. Yosida, Functional Analysis, Springer-Verlag, Berlin, 1995.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Nagatou, K. (2008). Validated Computations for Fundamental Solutions of Linear Ordinary Differential Equations. In: Bandle, C., Losonczi, L., Gilányi, A., Páles, Z., Plum, M. (eds) Inequalities and Applications. International Series of Numerical Mathematics, vol 157. Birkhäuser, Basel. https://doi.org/10.1007/978-3-7643-8773-0_5

Download citation

Publish with us

Policies and ethics