Skip to main content

Noncommutative Field Theories from a Deformation Point of View

  • Chapter
Quantum Field Theory
  • 2354 Accesses

Abstract

In this review we discuss the global geometry of noncommutative field theories from a deformation point of view: The space-times under consideration are deformations of classical space-time manifolds using star products. Then matter fields are encoded in deformation quantizations of vector bundles over the classical space-time. For gauge theories we establish a notion of deformation quantization of a principal fibre bundle and show how the deformation of associated vector bundles can be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bahns, D., Waldmann, S., Locally Noncommutative Space-Times. Rev. Math. Phys. 19 (2007), 273–305.

    Article  MATH  MathSciNet  Google Scholar 

  2. Barnich, G., Brandt, F., Grigoriev, M., Seiberg-Witten maps and noncommutative Yang-Mills theories for arbitrary gauge groups. J. High Energy Phys. 8 (2002), 23.

    Article  ADS  MathSciNet  Google Scholar 

  3. Bayen, F., Flato, M., Frønsdal, C., Lichnerowicz, A., Sternheimer, D., Deformation Theory and Quantization. Ann. Phys. 111 (1978), 61–151.

    Article  MATH  ADS  Google Scholar 

  4. Bordemann, M., Ginot, G., Halbout, G., Herbig, H.-C., Waldmann, S., Formalité G adaptee et star-représentations sur des sous-variétés coïsotropes. Preprint math.QA/0504276 (2005), 56 pages. Extended version of the previous preprint math/0309321.

    Google Scholar 

  5. Bordemann, M., Neumaier, N., Waldmann, S., Weiss, S., Deformation quantization of surjective submersions and principal fibre bundles. Preprint (2007). In preparation.

    Google Scholar 

  6. Bursztyn, H., Waldmann, S., Deformation Quantization of Hermitian Vector Bundles. Lett. Math. Phys. 53 (2000), 349–365.

    Article  MATH  MathSciNet  Google Scholar 

  7. Bursztyn, H., Waldmann, S., Algebraic Rieffel Induction, Formal Morita Equivalence and Applications to Deformation Quantization. J. Geom. Phys. 37 (2001), 307–364.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Bursztyn, H., Waldmann, S., The characteristic classes of Morita equivalent star products on symplectic manifolds. Commun. Math. Phys. 228 (2002), 103–121.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Bursztyn, H., Waldmann, S., Completely positive inner products and strong Morita equivalence. Pacific J. Math. 222 (2005), 201–236.

    Article  MATH  MathSciNet  Google Scholar 

  10. Cattaneo, A. S., Felder, G., Tomassini, L., From local to global deformation quantization of Poisson manifolds. Duke Math. J. 115.2 (2002), 329–352.

    Article  MATH  MathSciNet  Google Scholar 

  11. Connes, A., Noncommutative Geometry. Academic Press, San Diego, New York, London, 1994.

    MATH  Google Scholar 

  12. Dabrowski, L., Grosse, H., Hajac, P. M., Strong Connections and Chern-Connes Pairing in the Hopf-Galois Theory. Commun. Math. Phys. 220 (2001), 301–331.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. Donald, J. D., Flanigan, F. J., Deformations of algebra modules. J. Algebra 31 (1974), 245–256.

    Article  MATH  MathSciNet  Google Scholar 

  14. DeWilde, M., Lecomte, P. B. A., Existence of Star-Products and of Formal Deformations of the Poisson Lie Algebra of Arbitrary Symplectic Manifolds. Lett. Math. Phys. 7 (1983), 487–496.

    Article  ADS  MathSciNet  Google Scholar 

  15. Dito, G., Sternheimer, D., Deformation quantization: genesis, developments and metamorphoses. In: Halbout, G. (eds.), Deformation quantization. [22], 9–54.

    Google Scholar 

  16. Dolgushev, V. A., Covariant and equivariant formality theorems. Adv. Math. 191 (2005), 147–177.

    Article  MATH  MathSciNet  Google Scholar 

  17. Doplicher, S., Fredenhagen, K., Roberts, J. E., The Quantum Structure of Spacetime at the Planck Scale and Quantum Fields. Commun. Math. Phys. 172 (1995), 187–220.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Gerstenhaber, M., On the Deformation of Rings and Algebras. Ann. Math. 79 (1964), 59–103.

    Article  MathSciNet  Google Scholar 

  19. Gutt, S., Variations on deformation quantization. In: Dito, G., Sternheimer, D. (eds.), Conférence Moshé Flato 1999. Quantization, Deformations, and Symmetries, Mathematical Physics Studies no. 21, 217–254. Kluwer Academic Publishers, Dordrecht, Boston, London, 2000.

    Google Scholar 

  20. Gutt, S., Rawnsley, J., Equivalence of star products on a symplectic manifold; an introduction to Deligne’s Čech cohomology classes. J. Geom. Phys. 29 (1999), 347–392.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. Hajac, P. M., Matthes, R., Szymański, W., Chern numbers for two families of non-commutative Hopf fibrations. C. R. Math. Acad. Sci. Paris 336.11 (2003), 925–930.

    MATH  MathSciNet  Google Scholar 

  22. Halbout, G. (eds.), Deformation Quantization, vol. 1 in IRMA Lectures in Mathematics and Theoretical Physics. Walter de Gruyter, Berlin, New York, 2002.

    Google Scholar 

  23. Heller, J. G., Neumaier, N., Waldmann, S., A C*-Algebraic Model for Locally Non-commutative Spacetimes. Lett. Math. Phys. 80 (2007), 257–272.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. Jurčo, B., Möller, L., Schraml, S., Schupp, P., Wess, J., Construction of non-Abelian gauge theories on noncommutative spaces. Eur. Phys. J. C21 (2001), 383–388.

    ADS  Google Scholar 

  25. Jurčo, B., Schraml, S., Schupp, P., Wess, J., Enveloping algebra-valued gauge transformations for non-abelian gauge groups on non-commutative spaces. Eur. Phys. J. C Part. Fields 17.3 (2000), 521–526.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. Jurčo, B., Schupp, P., Noncommutative Yang-Mills from equivalence of star products. Eur. Phys. J. C14 (2000), 367–370.

    ADS  Google Scholar 

  27. Jurčo, B., Schupp, P., Wess, J., Noncommutative gauge theory for Poisson manifolds. Nucl. Phys. B584 (2000), 784–794.

    ADS  Google Scholar 

  28. Jurčo, B., Schupp, P., Wess, J., Nonabelian noncommutative gauge theory via noncommutative extra dimensions. Nucl.Phys. B 604 (2001), 148–180.

    ADS  Google Scholar 

  29. Kontsevich, M., Deformation Quantization of Poisson manifolds. Lett. Math. Phys. 66 (2003), 157–216.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. Lance, E. C., Hilbert C*-modules. A Toolkit for Operator algebraists, vol. 210 in London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1995.

    Google Scholar 

  31. Nest, R., Tsygan, B., Algebraic Index Theorem. Commun. Math. Phys. 172 (1995), 223–262.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. Rosenberg, J., Rigidity of K-theory under deformation quantization. Preprint q-alg/9607021 (July 1996).

    Google Scholar 

  33. Schmüdgen, K., Unbounded Operator Algebras and Representation Theory, vol. 37 in Operator Theory: Advances and Applications. Birkhäuser Verlag, 1990.

    Google Scholar 

  34. Seiberg, N., Witten, E., String Theory and Noncommutative Geometry. J. High. Energy Phys. 09 (1999), 032.

    Article  ADS  MathSciNet  Google Scholar 

  35. Waldmann, S., Deformation of Hermitian Vector Bundles and Non-Commutative Field Theory. In: Maeda, Y., Watamura, S. (eds.), Noncommutative Geometry and String Theory, vol. 144 in Prog. Theo. Phys. Suppl., 167–175. Yukawa Institute for Theoretical Physics, 2001. Proceedings of the International Workshop on Noncommutative Geometry and String Theory.

    Google Scholar 

  36. Waldmann, S., Morita equivalence of Fedosov star products and deformed Hermitian vector bundles. Lett. Math. Phys. 60 (2002), 157–170.

    Article  MATH  MathSciNet  Google Scholar 

  37. Waldmann, S., On the representation theory of deformation quantization. In: Halbout, G. (eds.), Deformation quantization. [22], 107–133.

    Google Scholar 

  38. Waldmann, S., The Picard Groupoid in Deformation Quantization. Lett. Math. Phys. 69 (2004), 223–235.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  39. Waldmann, S., Morita Equivalence, Picard Groupoids and Noncommutative Field Theories. In: Carow-Watamura, U., Maeda, Y., Watamura, S. (eds.), Quantum Field Theory and Noncommutative Geometry, vol. 662 in Lect. Notes Phys., 143–155. Springer-Verlag, 2005.

    Google Scholar 

  40. Waldmann, S., Poisson-Geometrie und Deformationsquantisierung. Eine Einführung. Springer-Verlag, 2007.

    Google Scholar 

  41. Weiß, S., Nichtkommutative Eichtheorien und Deformationsquantisierung von Hauptfaserbündeln. Master thesis, Fakultät für Mathematik und Physik, Physikalisches Institut, Albert-Ludwigs-Universität, Freiburg, 2006. Available at http://idefix.physik.uni-freiburg.de/~weiss/.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Waldmann, S. (2009). Noncommutative Field Theories from a Deformation Point of View. In: Fauser, B., Tolksdorf, J., Zeidler, E. (eds) Quantum Field Theory. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8736-5_7

Download citation

Publish with us

Policies and ethics