Skip to main content

Part of the book series: Milestones in Drug Therapy ((MDT))

Abstract

Modification of therapeutic proteins and peptides by polyethylene glycol conjugation is a well known method to improve the pharmacological properties of such drugs.

Here we describe an alternative way of PEGylation from classic chemical methods, taking advantage of enzymes able to specifically modify some amino acid side chains, in particular glycosyltransferases and transglutaminases.

A few examples are here described, in particular granulocyte-colony stimulating factor, which has been successfully PEGylated by enzymatic methods leading to a new long-lasting compound presently under evaluation in clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Harris JM (ed.) (1992) Polyethylene glycol chemistry, biotechnical and biomedical applications. Plenum Press, New York

    Google Scholar 

  2. Harris JM, Zalipsky S (eds) (1997) Poly(ethylene glycol) chemistry and biological applications. American Chemical Society, Washington DC

    Google Scholar 

  3. Roberts MJ, Bentley MD, Harris JM (2002) Chemistry for peptide and protein PEGylation. Adv Drug Deliv Rev 54: 459–476

    Article  CAS  PubMed  Google Scholar 

  4. Harris JM, Veronese FM (2003) Peptide and protein pegylation II — Clinical evaluation. Adv Drug Deliv Rev 55: 1259–1260

    Article  CAS  Google Scholar 

  5. Veronese FM, Harris JM (2008) Peptide and protein PEGylation III: Advances in chemistry and clinical applications. Adv Drug Deliv Rev 60: 1–2

    Article  CAS  Google Scholar 

  6. Levy Y, Hershfield MS, Fernandez-Mejia C et al. (1988) Adenosine deaminase deficiency with late onset of recurrent infections: response to treatment with polyethylene glycol-modified adenosine deaminase. J Pediatr 113(2): 312–317

    Article  CAS  PubMed  Google Scholar 

  7. Graham LM (2003) Pegaspargase: a review of clinical studies. Adv Drug Deliv Rev 55: 1293–1302

    Article  CAS  PubMed  Google Scholar 

  8. Wang YS, Youngster S, Grace M et al. (2002) Structural and biological characterization of PEGylated recombinant interferon alpha-2b and its therapeutic implications. Adv Drug Deliv Rev 54: 547–570

    Article  CAS  PubMed  Google Scholar 

  9. Bailon P, Palleroni A, Schaffer CA et al. (2001) Rational design of a potent, long-lasting form of interferon: a 40 kDa branched polyethylene glycol-conjugated interferon alpha-2a for the treatment of hepatitis. Bioconjug Chem. 12(2): 195–202

    Article  CAS  PubMed  Google Scholar 

  10. Kinstler OB, Brems DN, Lauren SL et al. (1996) Characterization and stability of N-terminally PEGylated rhG-CSF. Pharm Res 13(7): 996–1002

    Article  CAS  PubMed  Google Scholar 

  11. Cox G (1999) Derivatives of growth hormone and related proteins. WO 1999/00388711

    Google Scholar 

  12. Goodson RJ, Katre NV (1990) Site-directed pegylation of recombinant interleukin-2 at its glycosylate site. Biotechnology (NY) 8(4): 343–346

    Article  CAS  Google Scholar 

  13. Spiro RG (1973) Glycoproteins. Adv Protein Chem 27: 349–467

    Article  CAS  PubMed  Google Scholar 

  14. Roseman S (2001) Reflections on glycobiology. J Biol Chem 276(45): 41527–41542

    Article  CAS  PubMed  Google Scholar 

  15. Ernst B, Sinay P, Hart G (eds): (2000) Oligosaccharides in Chemistry and Biology — A Comprehensive Handbook. Wiley-VCH Verlag GmbH, Germany

    Google Scholar 

  16. Shriver Z, Raguram S, Sasisekharan R (2004) Glycomics: a pathway to a class of new and improved therapeutics. Nat Rev Drug Discov 3: 863–873

    Article  CAS  PubMed  Google Scholar 

  17. Verez-Bencomo V, Fernández-Santana V, Hardy E et al. (2004) A synthetic conjugate polysaccharide vaccine against Haemophilus influenzae type b. Science 305(5683): 522–525

    Article  CAS  PubMed  Google Scholar 

  18. Legendre H, Decaestecker C, Goris Gbenou M et al. (2004) Prognostic stratification of Dukes B colon cancer by a neoglycoprotein. Int J Oncol 25(2): 269–276

    CAS  PubMed  Google Scholar 

  19. Davis BG, Robinson MA (2002) Drug delivery systems based on sugar-macromolecule conjugates. Curr Opin Drug Discov Devel 5(2): 279–288

    CAS  PubMed  Google Scholar 

  20. Teranishi K, Gollackner B, Bühler L et al. (2002) Depletion of anti-gal antibodies in baboons by intravenous therapy with bovine serum albumin conjugated to gal oligosaccharides. Transplantation 73(1): 129–139

    Article  CAS  PubMed  Google Scholar 

  21. DeFrees S, Wang ZG, Xing R et al. (2006) GlycoPEGylation of recombinant therapeutic proteins produced in Escherichia coli. Glycobiology 16(9): 833–843

    CAS  Google Scholar 

  22. Roskos LK, Lum P, Lockbaum P et al. (2006) Pharmacokinetic/pharmacodynamic modeling of pegfilgrastim in healthy subjects. J Clin Pharmacol 46(7): 747–757

    Article  CAS  PubMed  Google Scholar 

  23. Rosendahl MS, Doherty DH, Smith DJ et al. (2005) Site-specific protein PEGylation: application to cysteine analogs of recombinant human granulocyte colony-stimulating factor. BioProcess International 3: 52–62

    CAS  Google Scholar 

  24. Molineux G (2004) The design and development of pegfilgrastim (PEG-rmetHuG-CSF, Neulasta). Curr Pharm Des 10(11): 1235–1244

    Article  CAS  PubMed  Google Scholar 

  25. Frampton JE, Keating GM (2005) Spotlight on pegfilgrastim in chemotherapy-induced neutropenia. BioDrugs 19(6): 405–407

    Article  CAS  PubMed  Google Scholar 

  26. Defrees S, Clausen M, Zopf DA et al. (2007) Glycopegylated Granulocyte Colony Stimulating Factor. US Patent Application 20070254836

    Google Scholar 

  27. Kaushansky K, Lopez JA, Brown CB (1992) Role of carbohydrate modification in the production and secretion of human granulocyte macrophage colony-stimulating factor in genetically engineered and normal mesenchymal cells. Biochemistry 31:1881–1886

    Article  CAS  PubMed  Google Scholar 

  28. Forno G, Fogolin MB, Oggero M et al. (2004) N-and O-linked carbohydrates and glycosylation site occupancy in recombinant human granulocyte-macrophage colony-stimulating factor secreted by a Chinese hamster ovary cell line. Eur J Biochem 271: 907–919

    Article  CAS  PubMed  Google Scholar 

  29. Defrees S, Bayer RJ, Bowec et al. (2008) Glycopegylated Follicle Stimulating Hormone. US Patent Application 20080015142

    Google Scholar 

  30. Defrees S, Bayer RJ, Zopf DA et al. (2006) Glycopegylated erythropoietin formulations. US Patent Application 20060287224

    Google Scholar 

  31. Klausen NK, Bjorn S, Behrens C et al. (2008) Pegylated Factor VII Glycoforms. US Patent Application 20080039373

    Google Scholar 

  32. Folk JE, Finlayson JS (1977) The epsilon-(gamma-glutamyl)lysine crosslink and the catalytic role of trans-glutaminases. Adv Protein Chem 31: 1–133

    Article  CAS  PubMed  Google Scholar 

  33. Folk JE (1980) Transglutaminases. Annu Rev Biochem 49: 517–531

    Article  CAS  PubMed  Google Scholar 

  34. Lorand L, Conrad SM (1984) Transglutaminases. Mol Cell Biochem 58: 9–35

    Article  CAS  PubMed  Google Scholar 

  35. Griffin M, Casadio R, Bergamini CM (2002) Transglutaminases: nature’s biological glues. Biochem J 368(Pt 2): 377–396

    Article  CAS  PubMed  Google Scholar 

  36. Nielsen PM (1995) Reactions and Potential Industrial Applications of Transglutaminase. Review of Literature and Patent. Food Biotechnol 9: 119–156

    Article  CAS  Google Scholar 

  37. Fontana A, Spolaore B, Mero A, Veronese FM (2008) Site-specific modification and PEGylation of pharmaceutical proteins mediated by transglutaminase. Adv Drug Deliv Rev 60(1): 13–28

    Article  CAS  PubMed  Google Scholar 

  38. Coussons PJ, Price NC, Kelly SM, Smith B, Sawyer L (1992) Factors that govern the specificity of transglutaminase-catalysed modification of proteins and peptides. Biochem J 282(Pt 3): 929–930

    CAS  PubMed  Google Scholar 

  39. Ohtsuka T, Ota M, Nio N et al. (2000) Comparison of substrate specificities of transglutaminases using synthetic peptides as acyl donors. Biosci Biotechnol Biochem 64(12): 2608–2613

    Article  Google Scholar 

  40. Ohtsuka T, Sawa A, Kawabata R et al. (2000) Substrate specificities of microbial transglutaminase for primary amines. J Agric Food Chem 48(12): 6230–6233

    Article  CAS  PubMed  Google Scholar 

  41. Kashiwagi T, Yokoyama K, Ishikawa K et al. (2002) Crystal structure of microbial transglutaminase from Streptoverticillium mobaraense. J Biol Chem 277(46): 44252–44260

    Article  CAS  Google Scholar 

  42. Sato H, Yamamoto K, Hayashi E et al. (2000) Transglutaminase-mediated dual and site-specific incorporation of poly(ethylene glycol) derivatives into a chimeric interleukin-2. Bioconjug Chem 11(4): 502–509

    Article  CAS  PubMed  Google Scholar 

  43. Sato H, Hayashi E, Yamada N et al. (2001) Further studies on the site-specific protein modification by microbial transglutaminase. Bioconjug Chem 12(5): 701–710

    Article  CAS  PubMed  Google Scholar 

  44. Sato H (2002) Enzymatic procedure for site-specific pegylation of proteins. Adv Drug Deliv Rev 54(4): 487–504

    Article  CAS  PubMed  Google Scholar 

  45. Tonon G, Orsini G, Schrepper R et al. (2008) G-CSF site-specific mono-conjugates. International Patent Application WO 2008/017603

    Google Scholar 

  46. Veronese FM, Mero A, Spolaore B et al. (2008) Site-specific PEGylation of pharmaceutical proteins mediated by transglutaminase (Poster presented at the 35th Annual Meeting and Exposition of the Controlled Release Society, New York)

    Google Scholar 

  47. Bowen S, Tare N, Inoue T et al. (1999) Relationship between molecular mass and duration of activity of polyethylene glycol conjugated granulocyte colony-stimulating factor mutein. Exp Hematol 27(3): 425–432

    Article  CAS  PubMed  Google Scholar 

  48. Zundel M, Peschke B (2006) C-terminally pegylated growth hormones. WO 2006/084888

    Google Scholar 

  49. Macdougall IC (2005) CERA (Continuous Erythropoietin Receptor Activator): a new erythropoiesis-stimulating agent for the treatment of anemia. Curr Hematol Rep 4(6): 436–440

    Google Scholar 

  50. Pool CT (2004) Formation of novel erythropoietin conjugates using transglutaminase. International Patent Application WO 2004/108667

    Google Scholar 

  51. Fontana A, Fassina G, Vita C et al. (1986) Correlation between sites of limited proteolysis and segmental mobility in thermolysin. Biochemistry 25: 1847–1851

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Birkhäuser Verlag/Switzerland

About this chapter

Cite this chapter

Sergi, M., Caboi, F., Maullu, C., Orsini, G., Tonon, G. (2009). Enzymatic techniques for PEGylation of biopharmaceuticals. In: Veronese, F.M. (eds) PEGylated Protein Drugs: Basic Science and Clinical Applications. Milestones in Drug Therapy. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8679-5_5

Download citation

Publish with us

Policies and ethics