Skip to main content

Volcanogenic Tsunamis in Lakes: Examples from Nicaragua and General Implications

  • Conference paper
Tsunami and Its Hazards in the Indian and Pacific Oceans

Abstract

This paper emphasizes the fact that tsunamis can occur in continental lakes and focuses on tsunami triggering by processes related to volcanic eruptions and instability of volcanic edifices. The two large lakes of Nicaragua, Lake Managua and Lake Nicaragua, host a section of the Central American Volcanic Arc including several active volcanoes. One case of a tsunami in Lake Managua triggered by an explosive volcanic eruption is documented in the geologic record. However, a number of events occurred in the past at both lakes which were probably tsunamigenic. These include massive intrusion of pyroclastic flows from Apoyo volcano as well as of flank-collapse avalanches from Mombacho volcano into Lake Nicaragua. Maar-forming phreatomagmatic eruptions, which repeatedly occurred in Lake Managua, are highly explosive phenomena able to create hugh water waves as was observed elsewhere. The shallow water depth of the Nicaraguan lakes is discussed as the major limiting factor of tsunami amplitude and propagation speed. The very low-profile shores facilitate substantial in-land flooding even of relatively small waves. Implications for conceiving a possible warning system are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beget, J.E. Volcanic tsunamis. In (Sigurdsson H. et al. eds) Encyclopedia of Volcanoes. (Academic Press: 2000) pp. 1005–1014.

    Google Scholar 

  • Belousov, A., Voight, B., Belousova, M., and Muravyev, Y. (2000), Tsunamis generated by subaquatic volcanic explosions: Unique data from 1996 eruption in Karymskoye Lake, Kamchatka, Russia, Pure Appl. Geophys. 157, 1135–1143.

    Article  Google Scholar 

  • Borgia, A. and Van Wyk de Vries, B. (2003), The volcano-tectonic evolution of Concepcion, Nicaragua, Bull. Volcanol. 65, 248–266.

    Article  Google Scholar 

  • Brown, R.D., Ward, P.L., and Plafker, G. (1973), Geologic and seismologic aspects of the Managua, Nicaragua, earthquakes of December 23, 1972, US Geol. Surv. Prof. Paper 838, 34 p.

    Google Scholar 

  • Carey, S., Morelli, D., Sigurdsson, H., and Bronto, S. (2001), Tsunami deposits from major explosive eruptions: An example from the 1883 eruption of Krakatau, Geology 29, 347–350.

    Article  Google Scholar 

  • Carr, M.J. (1984), Symmetrical and segmented variation of physical and geochemical characteristics of the Central American volcanic front, J. Volcanol. Geotherm. Res. 20, 231–252.

    Article  Google Scholar 

  • Cowan, H., Prentice, C., Pantosti, D., de Martini, P., Strauch, W., and Workshop Participants (2002), Late Holocene earthquakes on the Aeropuerto Fault, Managua, Nicaragua, Bull. Seismol. Soc. Am. 92, 1694–1707.

    Article  Google Scholar 

  • De Lange, W.P., Prasetya, G.S., and Healy, T.R. (2001), Modelling of tsunamis generated by pyroclastic flows (ignimbrites), Natural Hazards 24, 251–266.

    Article  Google Scholar 

  • Dean, R.G. and Dalrymple, R.A. Water wave mechanics for engineers and scientists, Adv. Ser. Ocean Engin. vol. 2 (World Scientific, Singapore, New Jersey 1991), pp. 1–353.

    Google Scholar 

  • Dull, R., Stansell, N., Abbott, M., and Lacayo, M.R. (2005), Lahar hazards and late Holocene paleoecology from Volcan Mombacho, Nicaragua, Abstract Paleobiogeography II.

    Google Scholar 

  • Fernandéz, M., Molina, E., Havskov, J., and Atakan, K. (2000), Tsunamis and tsunami hazards in Central America, Natural Hazards 22, 91–116.

    Article  Google Scholar 

  • Freundt, A., Kutterolf, S., Wehrmann, H., Schmincke, H.-U., and Strauch, W. (2006a), Eruption of the dacite-to andesite-zoned Mateare Tephra, and associated tsunamis in Lake Managua, Nicaragua. J. Volcanol. Geotherm. Res. 149, 103–123.

    Article  Google Scholar 

  • Freundt, A., Kutterolf, S., Schmincke, H.-U., Hansteen, T.H., Wehrmann, H., Perez, W., Strauch, W., and Navarro, M. (2006b), Volcanic hazards in Nicaragua: Past, present, and future, GSA Spec. vol. 412 (in press).

    Google Scholar 

  • Freundt, A. (2003), Entrance of hot pyroclastic flows into the sea: Experimental observations, Bull. Volcanol. 65, 144–164.

    Google Scholar 

  • Freundt, A. (2006), Entrance of hot pyroclastic flows into the sea: Experimental tsunami formation, Bull. Volcanol. (in review).

    Google Scholar 

  • Fritz, H.M. (2002), Initial phase of landslide generated impulse waves, Ph.D. Thesis, ETH Zürich, Switzerland, ETH No. 14’ 871, 249 p.

    Google Scholar 

  • Govi, M., Gulla, G., and Nicoletti, P.G. (2002), Val Pola rock avalanche of July 28, 1987 in Valtellina (Central Italian Alps). In (Evans, S.G., DeGraff, J.V. eds.) Catastrophic Landslides: Effects, Occurrence and Mechanisms, Reviews in Engineering Geology 15, 71–89.

    Google Scholar 

  • Hammack, J.L. (1973), A note on tsunamis: Their generation and propagation in an ocean of uniform depth, J. Fluid Mech. 60, 769–799.

    Article  Google Scholar 

  • Hart, K., Carey, S., Sigurdsson, H., Sparks, R.S.J., and Robertson, R.E.A. (2004), Discharge of pyroclastic flows into the sea during the 1996–1998 eruptions of the Soufriere Hills Volcano, Montserrat, Bull. Volcanol. 66, 599–614.

    Article  Google Scholar 

  • Ichinose, G.A., Anderson, J.G., Satake, K., Schweickert, R.A., and Lahren, M.M. (2000), The potential hazard from tsunami and seiche waves generated by large earthquakes within Lake Tahoe, California — Nevada, Geophys. Res. Lett. 27, 1203–1206.

    Article  Google Scholar 

  • Keating, B.H. and Mcguire, W.J. (2000), Island edifice failures and associated tsunami hazards, Pure Appl. Geophys. 157, 899–955.

    Article  Google Scholar 

  • Kerle, N. and van Wyk de Vries, B. (2001), The 1998 debris avalanche at Casita Volcano, Nicaragua — Investigation of structural deformation as the cause of slope instability using remote sensing, J. Volcanol. Geotherm. Res. 105, 49–63.

    Article  Google Scholar 

  • Mccoy, F.W. and Heiken, G. (2000), Tsunami generated by the Late Bronze Age eruption of Thera (Santorini), Greece, Pure Appl. Geophys. 157, 1227–1256.

    Article  Google Scholar 

  • Mcguire, W.J. (2003), Volcano instability and lateral collapse, Revista 1, 33–45.

    Google Scholar 

  • Miller, D.J. (1960), Giant waves in Lituya Bay, Alaska, US Geol. Surv. Prof. Paper 354-C, 1–86.

    Google Scholar 

  • Molina, E. (1997), Tsunami catalogue for Central America 1539–1996, Report No. II 1-04, Institute of Solid Earth Physics, University of Bergen, Norway.

    Google Scholar 

  • Müller, L. (1964), The rockslide in the Vaiont Valley, Rock Mech. Eng. Geol. 2, 148–212.

    Google Scholar 

  • Newhall, C.G. and Dzurisin, D. (1988), Historical unrest at large calderas of the world, US Geol. Surv. Bull. 1855 (2 vol), 1108 p.

    Google Scholar 

  • Pelinovsky, E., Zahibo, N., Dunkley, P., Edmonds, M., Herd, R., Talipova, T., Kozelkov, A., and Nikolkina, I. (2004), Tsunami generated by the volcano eruption on July 12–13, 2003 at Montserrat, Lesser Antilles, Sci. Tsunami Hazards 22, 44–57.

    Google Scholar 

  • Plafker, G. and Eyzaguirre, V.R. Rock avalanche and wave at Chungar, Peru. In (Voight, B. ed) Rockslides and Avalanches, vol. 2, Developments in Engineering Geology 14B (Elsevier, NL: 1979) 269–279.

    Google Scholar 

  • Reid, M.E., Sisson, T.W., and Brien, D.L. (2001), Volcano collapse promoted by hydrothermal alteration and edifice shape, Mount Rainier, Washington, Geology 29, 779–782.

    Article  Google Scholar 

  • Scott, K.M., Vallance, J.W., Kerle, N., Macias, J.L., Strauch, W., and Devoli, G. (2005), Catastrophic precipitation-triggered lahar at Casita Volcano, Nicaragua: Occurrence, bulking and transformation, Earth Surf. Process. Landforms 30, 59–79.

    Article  Google Scholar 

  • Self, S., Rampino, M.R., Newton, M.S., and Wolff, J.A. (1984), Volcanological study of the great Tambora eruption of 1815, Geology 12, 659–663.

    Article  Google Scholar 

  • Siebert, L. (2002), Landslides resulting from structural failure of volcanoes. In (Evans, S.G. and DeGraff, JV eds.) Catastrophic Landslides: Effects, Occurrence and Mechanisms, Rev. Engig. Geol. 15, 209–235.

    Google Scholar 

  • Sigurdsson, H. and Carey, S.N. (1989), Plinian and co-ignimbrite tephra fall from the 1815 eruption of Tambora volcano, Bull. Volcanol. 51, 243–270.

    Article  Google Scholar 

  • Slingerland, R.L. and Voight, B. Occurrences, properties and predictive models of landslide-generated tsunami waves. In (Voight, B., ed) Rockslides and avalanches, vol. 2, Developments in Engig. Geol. 14B (Elsevier, NL: 1979) pp.317–397.

    Google Scholar 

  • Sussman, D. (1985), Apoyo Caldera, Nicaragua: A major Quaternary silicic eruptive center, J. Volcanol. Geotherm. Res. 24, 249–282.

    Article  Google Scholar 

  • Tinti, S., Bortolucci, E., and Armigliato, A. (1999), Numerical simulation of the landslide-induced tsunami of 1988 on Vulcano Island, Italy, Bull. Volcanol. 61, 121–137.

    Article  Google Scholar 

  • Vallance, J.W., Schilling, S.P., and Devoli, G. (2001a), Lahar hazards at Mombacho Volcano, Nicaragua, USGS Open File Report 01-455, 14 p.

    Google Scholar 

  • Vallance, J.W., Schilling, S.P., Devoli, G., and Howell, M.M. (2001b), Lahar hazards at Concepción Volcano, Nicaragua, USGS Open File Report 01-457, 13 p.

    Google Scholar 

  • Voight, B., Glicken, H., Janda, R.J., and Douglass, P.M. (1981), Catastrophic rockslide avalanche of May 18. In (P.W. Lipman and D.R. Mullineaux, eds), The 1980 eruptions of Mount St. Helens, Washington, US Geol. Survey Prof. Paper 1250, 347–377.

    Google Scholar 

  • Wagner, T.P., Mckee, C.O., Kuduon, J., and Kombua, R. (2003), Landslide-induced wave in a small volcanic lake: Kasu Tephra Cone, Papua New Guinea, Int. J. Earth Sci. 92, 405–406.

    Article  Google Scholar 

  • Walder, J.S., Watts, P., Sorensen, O.E., and Janssen, K. (2003), Tsunamis generated by sub aerial mass flows, J. Geophys. Res. 108, 2236, doi: 10.1029/2001JB000707.

    Article  Google Scholar 

  • Watts, P. (1998), Wavemaker curves for tsunamis generated by underwater landslides, J. Waterway Port Coastal and Ocean Engrg. 124, 127–137.

    Article  Google Scholar 

  • Waythomas, C.F. and Neal, C.A. (1998), Tsunami generation by pyroclastic flow during the 3500-year B.P. caldera-forming eruption of Aniakchak Volcano, Alaska, Bull. Volcanol. 60, 110–124.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Verlag, Basel

About this paper

Cite this paper

Freundt, A., Strauch, W., Kutterolf, S., Schmincke, HU. (2007). Volcanogenic Tsunamis in Lakes: Examples from Nicaragua and General Implications. In: Satake, K., Okal, E.A., Borrero, J.C. (eds) Tsunami and Its Hazards in the Indian and Pacific Oceans. Pageoph Topical Volumes. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8364-0_14

Download citation

Publish with us

Policies and ethics