Skip to main content

On the Role of Low-Dose Effects and Epigenetics in Toxicology

  • Chapter
  • First Online:
Molecular, Clinical and Environmental Toxicology

Part of the book series: Experientia Supplementum ((EXS,volume 101))

Abstract

For a long time, scientists considered genotoxic effects as the major issue concerning the influence of environmental chemicals on human health. Over the last decades, a new layer superimposed the genome, i.e., the epigenome, tremendously changing this point of view. The term “epigenetics” comprises stable alterations in gene expression potential arising from variations in DNA methylation and a variety of histone modifications, without changing the underlying DNA sequence. Recently, also gene silencing by small noncoding RNAs (ncRNAs), in particular by microRNAs, was included in the list of epigenetic mechanisms. Multiple studies in vivo as well as in vitro have shown that a multitude of different environmental factors are capable of changing the epigenetic pattern as well as miRNA expression in certain cell types, leading to aberrant gene expression profiles in cells and tissues. These changes may have extensive effects concerning the proper gene expression necessary in a specified cell type and can even lead into a state of disease. Especially the roles of epigenetic modifications and miRNA alterations in tumorigenesis have been a major focus in research over the last years. This chapter will give an overview on epigenetic features and on the spectrum of epigenetic changes observed after exposure against environmental chemicals and pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, Heine-Suňer D, Cigudosa JC, Urioste M, Benitez J, Boix-Chornet M, Sanchez-Aguilera A, Ling C, Carlsson E, Poulsen P, Vaag A, Stephan Z, Spector TD, Wu YZ, Plass C, Esteller M (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA 102:10604–10609

    Article  PubMed  CAS  Google Scholar 

  2. Guil S, Esteller M (2009) DNA methylomes, histone codes and miRNAs: tying it all together. Int J Biochem Cell Biol 41:87–95

    Article  PubMed  CAS  Google Scholar 

  3. Reik W, Dean W (2001) DNA methylation and mammalian epigenetics. Electrophoresis 22:2838–2843

    Article  PubMed  CAS  Google Scholar 

  4. Morgan HD, Santos F, Green K, Dean W, Reik W (2005) Epigenetic reprogramming in mammals. Hum Mol Genet 14(Suppl 1):R47–R58

    Article  PubMed  CAS  Google Scholar 

  5. Bestor TH, Verdine GL (1994) DNA methyltransferases. Curr Opin Cell Biol 6:380–389

    Article  PubMed  CAS  Google Scholar 

  6. McClelland M, Ivarie R (1982) Asymmetrical distribution of CpG in an ‘average’ mammalian gene. Nucleic Acids Res 10:7865–7877

    Article  PubMed  CAS  Google Scholar 

  7. Bird AP (1986) CpG-rich islands and the function of DNA methylation. Nature 321:209–213

    Article  PubMed  CAS  Google Scholar 

  8. Bestor TH (2000) The DNA methyltransferases of mammals. Hum Mol Genet 9:2395–2402

    Article  PubMed  CAS  Google Scholar 

  9. Zhou X, Li Q, Arita A, Sun H, Costa M (2009) Effects of nickel, chromate, and arsenite on histone 3 lysine methylation. Toxicol Appl Pharmacol 236:78–84

    Article  PubMed  CAS  Google Scholar 

  10. Zhu B, Zheng Y, Hess D, Angliker H, Schwarz S, Siegmann M, Thiry S, Jost JP (2000) 5-Methylcytosine-DNA glycosylase activity is present in a cloned G/T mismatch DNA glycosylase associated with the chicken embryo DNA methylation complex. Proc Natl Acad Sci USA 97:5135–5139

    Article  PubMed  CAS  Google Scholar 

  11. Bennett MT, Rodgers MT, Hebert AS, Ruslander LE, Eisele L, Drohat AC (2006) Specificity of human thymine DNA glycosylase depends on N-glycosidic bond stability. J Am Chem Soc 128:12510–12519

    Article  PubMed  CAS  Google Scholar 

  12. Razin A (1998) CpG methylation, chromatin structure and gene silencing—a three way connection. EMBO J 17:4905–4908

    Article  PubMed  CAS  Google Scholar 

  13. Razin A, Cedar H (1977) Distribution of 5-methylcytosine in chromatin. Proc Natl Acad Sci USA 74:2725–2728

    Article  PubMed  CAS  Google Scholar 

  14. Eckhardt F, Lewin J, Cortese R, Rakyan VK, Attwood J, Burger M, Burton J, Cox TV, Davies R, Down TA, Haefliger C, Horton R, Howe K, Jackson DK, Kunde J, Koenig C, Liddle J, Niblett D, Otto T, Pettett R, Seemann S, Thompson C, West T, Rogers J, Olek A, Berlin K, Beck S (2006) DNA methylation profiling of human chromosomes 6, 20 and 22. Nat Genet 38:1378–1385

    Article  PubMed  CAS  Google Scholar 

  15. Finch JT, Lutter LC, Rhodes D, Brown RS, Rushton B, Levitt M, Klug A (1977) Structure of nucleosome core particles of chromatin. Nature 269:29–36

    Article  PubMed  CAS  Google Scholar 

  16. Jenuwein T (2001) Re-SET-ting heterochromatin by histone methyltransferases. Trends Cell Biol 11:266–273

    Article  PubMed  CAS  Google Scholar 

  17. Wade PA, Pruss D, Wolffe AP (1997) Histone acetylation: chromatin in action. Trends Biochem Sci 22:128–132

    Article  PubMed  CAS  Google Scholar 

  18. Karlić R, Chung HR, Lasserre J, Vlahovicek K, Vingron M (2010) Histone modification levels are predictive for gene expression. Proc Natl Acad Sci USA 107:2926–2931

    Article  PubMed  Google Scholar 

  19. Hodawadekar SC, Marmorstein R (2007) Chemistry of acetyl transfer by histone modifying enzymes: structure, mechanism and implications for effector design. Oncogene 26:5528–5540

    Article  PubMed  CAS  Google Scholar 

  20. Hublitz P, Albert M, Peters AH (2010) Mechanisms of transcriptional repression by histone lysine methylation. Int J Dev Biol 53:335–354

    Article  CAS  Google Scholar 

  21. Shi Y, Whetstine JR (2007) Dynamic regulation of histone lysine methylation by demethylases. Mol Cell 25:1–14

    Article  PubMed  CAS  Google Scholar 

  22. Yi T, Fang J, Erdjument-Bromage H, Warren ME, Borchers CH, Tempst P, Zhang Y (2006) Histone demethylation by a family of JmjC domain-containing proteins. Nature 439:811–816

    Article  CAS  Google Scholar 

  23. Yamane K, Toumazou C, Yi T, Erdjument-Bromage H, Tempst P, Wong J, Zhang Y (2006) JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor. Cell 125:483–495

    Article  PubMed  CAS  Google Scholar 

  24. Agger K, Christensen J, Cloos PA, Helin K (2008) The emerging functions of histone demethylases. Curr Opin Genet Dev 18:159–168

    Article  PubMed  CAS  Google Scholar 

  25. Chuang LSH, Ian HI, Koh TW, Ng HH, Xu G, Li BF (1997) Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1. Science 277:1996–2000

    Article  PubMed  CAS  Google Scholar 

  26. Iida T, Suetake I, Tajima S, Morioka H, Ohta S, Obuse C, Tsurimoto T (2002) PCNA clamp facilitates action of DNA cytosine methyltransferase 1 on hemimethylated DNA. Genes Cells 7:997–1007

    Article  PubMed  CAS  Google Scholar 

  27. Jones PL, Jan Veenstra GC, Wade PA, Vermaak D, Kass SU, Landsberger N, Strouboulis J, Wolffe AP (1998) Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet 19:187–191

    Article  PubMed  CAS  Google Scholar 

  28. Schwartz YB, Pirrotta V (2008) Polycomb complexes and epigenetic states. Curr Opin Cell Biol 20:266–273

    Article  PubMed  CAS  Google Scholar 

  29. Ringrose L, Paro R (2004) Epigenetic regulation of cellular memory by the polycomb and trithorax group proteins. Annu Rev Genet 38:413–443

    Article  PubMed  CAS  Google Scholar 

  30. Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, Jones RS, Zhang Y (2002) Role of histone H3 lysine 27 methylation in polycomb-group silencing. Science 298:1039–1043

    Article  PubMed  CAS  Google Scholar 

  31. Cao R, Zhang Y (2004) SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex. Mol Cell 15:57–67

    Article  PubMed  CAS  Google Scholar 

  32. Milne TA, Briggs SD, Brock HW, Martin ME, Gibbs D, Allis CD, Hess JL (2002) MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol Cell 10:1107–1117

    Article  PubMed  CAS  Google Scholar 

  33. Nakamura T, Mori T, Tada S, Krajewski W, Rozovskaia T, Wassell R, Dubois G, Mazo A, Croce CM, Canaani E (2002) ALL-1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation. Mol Cell 10:1119–1128

    Article  PubMed  CAS  Google Scholar 

  34. Okamura K, Lai EC (2008) Endogenous small interfering RNAs in animals. Nat Rev Mol Cell Biol 9:673–678

    Article  PubMed  CAS  Google Scholar 

  35. Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655

    Article  PubMed  CAS  Google Scholar 

  36. Malone CD, Hannon GJ (2009) Small RNAs as guardians of the genome. Cell 136:656–668

    Article  PubMed  CAS  Google Scholar 

  37. Ghildiyal M, Zamore PD (2009) Small silencing RNAs: An expanding universe. Nat Rev Genet 10:94–108

    Article  PubMed  CAS  Google Scholar 

  38. Farazi TA, Juranek SA, Tuschl T (2008) The growing catalog of small RNAs and their association with distinct Argonaute/Piwi family members. Development 135:1201–1214

    Article  PubMed  CAS  Google Scholar 

  39. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36:D154–D158

    Article  PubMed  CAS  Google Scholar 

  40. Berezikov E, Guryev V, van de Belt J, Wienholds E, Plasterk RH, Cuppen E (2005) Phylogenetic shadowing and computational identification of human microRNA genes. Cell 120:21–24

    Article  PubMed  CAS  Google Scholar 

  41. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    Article  PubMed  CAS  Google Scholar 

  42. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  43. Hudder A, Novak RF (2008) miRNAs: effectors of environmental influences on gene expression and disease. Toxicol Sci 103:228–240

    Article  PubMed  CAS  Google Scholar 

  44. Esquela-Kerscher A, Slack FJ (2006) Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer 6:259–269

    Article  PubMed  CAS  Google Scholar 

  45. Lau P, de Strooper B (2010) Dysregulated microRNAs in neurodegenerative disorders. Semin Cell Dev Biol 21:768–773

    Article  PubMed  CAS  Google Scholar 

  46. Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Macdonald PE, Pfeffer S, Tuschl T, Rajewsky N, Rorsman P, Stoffel M (2004) A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432:226–230

    Article  PubMed  CAS  Google Scholar 

  47. Sayed D, Hong C, Chen IY, Lypowy J, Abdellatif M (2007) MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ Res 100:416–424

    Article  PubMed  CAS  Google Scholar 

  48. Furer V, Greenberg JD, Attur M, Abramson SB, Pillinger MH (2010) The role of microRNA in rheumatoid arthritis and other autoimmune diseases. Clin Immunol 136:1–15

    Article  PubMed  CAS  Google Scholar 

  49. He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–531

    Article  PubMed  CAS  Google Scholar 

  50. O’Donnell KA, Boeke JD (2007) Mighty Piwis defend the germline against genome intruders. Cell 129:37–44

    Article  PubMed  CAS  Google Scholar 

  51. Carmell MA, Girard A, van de Kant HJ, Bourc’his D, Bestor TH, de Rooij DG, Hannon GJ (2007) MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev Cell 12:503–514

    Article  PubMed  CAS  Google Scholar 

  52. Aravin AA, Sachidanandam R, Girard A, Fejes-Toth K, Hannon GJ (2007) Developmentally regulated piRNA clusters implicate MILI in transposon control. Science 316:744–747

    Article  PubMed  CAS  Google Scholar 

  53. Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, Sachidanandam R, Hannon GJ (2007) Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128:1089–1103

    Article  PubMed  CAS  Google Scholar 

  54. Aravin AA, Hannon GJ, Brennecke J (2007) The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race. Science 318:761–764

    Article  PubMed  CAS  Google Scholar 

  55. Matzke M, Kanno T, Huettel B, Daxinger L, Matzke AJ (2007) Targets of RNA-directed DNA methylation. Curr Opin Plant Biol 10:512–519

    Article  PubMed  CAS  Google Scholar 

  56. Bernstein E, Allis CD (2005) RNA meets chromatin. Genes Dev 19:1635–1655

    Article  PubMed  CAS  Google Scholar 

  57. Moazed D (2009) Small RNAs in transcriptional gene silencing and genome defence. Nature 457:413–420

    Article  PubMed  CAS  Google Scholar 

  58. Zilberman D, Cao X, Jacobsen SE (2003) ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science 299:716–719

    Article  PubMed  CAS  Google Scholar 

  59. Zilberman D, Cao X, Johansen LK, Xie Z, Carrington JC, Jacobsen SE (2004) Role of Arabidopsis ARGONAUTE4 in RNA-directed DNA methylation triggered by inverted repeats. Curr Biol 14:1214–1220

    Article  PubMed  CAS  Google Scholar 

  60. Matzke M, Kanno T, Daxinger L, Huettel B, Matzke AJ (2009) RNA-mediated chromatin-based silencing in plants. Curr Opin Cell Biol 21:367–376

    Article  PubMed  CAS  Google Scholar 

  61. Verdel A, Jia S, Gerber S, Sugiyama T, Gygi S, Grewal SI, Moazed D (2004) RNAi-mediated targeting of heterochromatin by the RITS complex. Science 303:672–676

    Article  PubMed  CAS  Google Scholar 

  62. Motamedi MR, Verdel A, Colmenares SU, Gerber SA, Gygi SP, Moazed D (2004) Two RNAi complexes, RITS and RDRC, physically interact and localize to noncoding centromeric RNAs. Cell 119:789–802

    Article  PubMed  CAS  Google Scholar 

  63. Volpe TA, Kidner C, Hall IM, Teng G, Grewal SIS, Martienssen RA (2002) Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297:1833–1837

    Article  PubMed  CAS  Google Scholar 

  64. Kim DH, Villeneuve LM, Morris KV, Rossi JJ (2006) Argonaute-1 directs siRNA-mediated transcriptional gene silencing in human cells. Nat Struct Mol Biol 13:793–797

    Article  PubMed  CAS  Google Scholar 

  65. Weinberg MS, Villeneuve LM, Ehsani A, Amarzguioui M, Aagaard L, Chen ZX, Riggs AD, Rossi JJ, Morris KV (2006) The antisense strand of small interfering RNAs directs histone methylation and transcriptional gene silencing in human cells. RNA 12:256–262

    Article  PubMed  CAS  Google Scholar 

  66. Han J, Kim D, Morris KV (2007) Promoter-associated RNA is required for RNA-directed transcriptional gene silencing in human cells. Proc Natl Acad Sci USA 104:12422–12427

    Article  PubMed  CAS  Google Scholar 

  67. Morris KV, Chan SWL, Jacobsen SE, Looney DJ (2004) Small interfering RNA-induced transcriptional gene silencing in human cells. Science 305:1289–1292

    Article  PubMed  CAS  Google Scholar 

  68. Kawasaki H, Taira K (2004) Induction of DNA methylation and gene silencing by short interfering RNAs in human cells. Nature 431:211–217

    Article  PubMed  CAS  Google Scholar 

  69. Kim DH, Saetrom P, Snøve O Jr, Rossi JJ (2008) MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc Natl Acad Sci USA 105:16230–16235

    Article  PubMed  CAS  Google Scholar 

  70. Gonzalez S, Pisano DG, Serrano M (2008) Mechanistic principles of chromatin remodeling guided by siRNAs and miRNAs. Cell Cycle 7:2601–2608

    Article  PubMed  CAS  Google Scholar 

  71. Bühler M, Verdel A, Moazed D (2006) Tethering RITS to a nascent transcript initiates RNAi- and heterochromatin-dependent gene silencing. Cell 125:873–886

    Article  PubMed  CAS  Google Scholar 

  72. Rybak A, Fuchs H, Smirnova L, Brandt C, Pohl EE, Nitsch R, Wulczyn FG (2008) A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nat Cell Biol 10:987–993

    Article  PubMed  CAS  Google Scholar 

  73. Rybak A, Fuchs H, Hadian K, Smirnova L, Wulczyn EA, Michel G, Nitsch R, Krappmann D, Wulczyn FG (2009) The let-7 target gene mouse lin-41 is a stem cell specific E3 ubiquitin ligase for the miRNA pathway protein Ago2. Nat Cell Biol 11:1411–1420

    Article  PubMed  CAS  Google Scholar 

  74. Wulczyn FG, Smirnova L, Rybak A, Brandt C, Kwidzinski E, Ninnemann O, Strehle M, Seiler A, Schumacher S, Nitsch R (2007) Post-transcriptional regulation of the let-7 microRNA during neural cell specification. FASEB J 21:415–426

    Article  PubMed  CAS  Google Scholar 

  75. Obernosterer G, Leuschner PJ, Alenius M, Martinez J (2006) Post-translational regulation of microRNA expression. RNA 12:1161–1167

    Article  PubMed  CAS  Google Scholar 

  76. Weber B, Stresemann C, Brueckner B, Lyko F (2007) Methylation of human microRNA genes in normal and neoplastic cells. Cell Cycle 6:1001–1005

    Article  PubMed  CAS  Google Scholar 

  77. Iorio MV, Visone R, Di Leva G, Donati V, Petrocca F, Casalini P, Taccioli C, Volinia S, Liu CG, Alder H, Calin GA, Menard S, Croce CM (2007) MicroRNA signatures in human ovarian cancer. Cancer Res 67:8699–8707

    Article  PubMed  CAS  Google Scholar 

  78. Lujambio A, Esteller M (2009) How epigenetics can explain human metastasis: a new role for microRNAs. Cell Cycle 8:377–382

    Article  PubMed  CAS  Google Scholar 

  79. Kozaki K, Imoto I, Mogi S, Omura K, Inazawa J (2008) Exploration of tumor-suppressive microRNAs silenced by DNA hypermethylation in oral cancer. Cancer Res 68:2094–2105

    Article  PubMed  CAS  Google Scholar 

  80. Saito Y, Liang G, Egger G, Friedman JM, Chuang JC, Coetzee GA, Jones PA (2006) Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 9:435–443

    Article  PubMed  CAS  Google Scholar 

  81. Toyota M, Suzuki H, Sasaki Y, Maruyama R, Imai K, Shinomura Y, Tokino T (2008) Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer. Cancer Res 68:4123–4132

    Article  PubMed  CAS  Google Scholar 

  82. Denis H, Ndlovu MN, Fuks F (2011) Regulation of mammalian DNA methyltransferases: a route to new mechanisms. EMBO Rep 12:647–656

    Article  PubMed  CAS  Google Scholar 

  83. Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E, Liu S, Alder H, Costinean S, Fernandez-Cymering C, Volinia S, Guler G, Morrison CD, Chan KK, Marcucci G, Calin GA, Huebner K, Croce CM (2007) MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci USA 104:15805–15810

    Article  PubMed  CAS  Google Scholar 

  84. Garzon R, Liu S, Fabbri M, Liu Z, Heaphy CE, Callegari E, Schwind S, Pang J, Yu J, Muthusamy N, Havelange V, Volinia S, Blum W, Rush LJ, Perrotti D, Andreeff M, Bloomfield CD, Byrd JC, Chan K, Wu LC, Croce CM, Marcucci G (2009) MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood 113:6411–6418

    Article  PubMed  CAS  Google Scholar 

  85. Duursma AM, Kedde M, Schrier M, le Sage C, Agami R (2008) miR-148 targets human DNMT3b protein coding region. RNA 14:872–877

    Article  PubMed  CAS  Google Scholar 

  86. Tuddenham L, Wheeler G, Ntounia-Fousara S, Waters J, Hajihosseini MK, Clark I, Dalmay T (2006) The cartilage specific microRNA-140 targets histone deacetylase 4 in mouse cells. FEBS Lett 580:4214–4217

    Article  PubMed  CAS  Google Scholar 

  87. Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL, Wang DZ (2006) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 38:228–233

    Article  PubMed  CAS  Google Scholar 

  88. Winbanks CE, Wang B, Beyer C, Koh P, White L, Kantharidis P, Gregorevic P (2011) TGF-β regulates miR-206 and miR-29 to control myogenic differentiation through regulation of HDAC4. J Biol Chem 286:13805–13814

    Article  PubMed  CAS  Google Scholar 

  89. Huang H, Xie C, Sun X, Ritchie RP, Zhang J, Chen YE (2010) miR-10a contributes to retinoid acid-induced smooth muscle cell differentiation. J Biol Chem 285:8383–9389

    Article  CAS  Google Scholar 

  90. Sinkkonen L, Hugenschmidt T, Berninger P, Gaidatzis D, Mohn F, Artus-Revel CG, Zavolan M, Svoboda P, Filipowicz W (2008) MicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells. Nat Struct Mol Biol 15:259–267

    Article  PubMed  CAS  Google Scholar 

  91. Ashe A, Whitelaw E (2007) Another role for RNA: a messenger across generations. Trends Genet 23:8–10

    Article  PubMed  CAS  Google Scholar 

  92. Siemiatycki J, Richardson L, Straif K, Latreille B, Lakhani R, Campbell S, Rousseau MC, Boffetta P (2004) Listing occupational carcinogens. Environ Health Perspect 112:1447–1459

    Article  PubMed  CAS  Google Scholar 

  93. Liang G, Gonzalgo ML, Salem C, Jones PA (2002) Identification of DNA methylation differences during tumorigenesis by methylation-sensitive arbitrarily primed polymerase chain reaction. Methods 27:150–155

    Article  PubMed  CAS  Google Scholar 

  94. Gonzalgo ML, Liang G, Spruck CH 3rd, Zingg JM, Rideout WM 3rd, Jones PA (1997) Identification and characterization of differentially methylated regions of genomic DNA by methylation-sensitive arbitrarily primed PCR. Cancer Res 57:594–599

    PubMed  CAS  Google Scholar 

  95. Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6:857–866

    Article  PubMed  CAS  Google Scholar 

  96. Zhao CQ, Young MR, Diwan BA, Coogan TP, Waalkes MP (1997) Association of arsenic-induced malignant transformation with DNA hypomethylation and aberrant gene expression. Proc Natl Acad Sci USA 94:10907–10912

    Article  PubMed  CAS  Google Scholar 

  97. Cangul H, Broday L, Salnikow K, Sutherland J, Peng W, Zhang Q, Poltaratsky V, Yee H, Zoroddu MA, Costa M (2002) Molecular mechanisms of nickel carcinogenesis. Toxicol Lett 127:69–75

    Article  PubMed  CAS  Google Scholar 

  98. Murphy SK, Jirtle RL (2000) Imprinted genes as potential genetic and epigenetic toxicologic targets. Environ Health Perspect 108(Suppl 1):5–11

    PubMed  CAS  Google Scholar 

  99. Wareham KA, Lyon MF, Glenister PH, Williams ED (1987) Age related reactivation of an X-linked gene. Nature 327:725–727

    Article  PubMed  CAS  Google Scholar 

  100. Cattanach BM (1974) Position effect variegation in the mouse. Genet Res 23:291–306

    Article  PubMed  CAS  Google Scholar 

  101. Bennett-Baker PE, Wilkowski J, Burke DT (2003) Age-associated activation of epigenetically repressed genes in the mouse. Genetics 165:2055–2062

    PubMed  CAS  Google Scholar 

  102. Park CW, Chung JH (2001) Age-dependent changes of p57Kip2 and p21Cip1/Waf1 expression in skeletal muscle and lung of mice. Biochim Biophys Acta 1520:163–168

    Article  PubMed  CAS  Google Scholar 

  103. Barbot W, Dupressoir A, Lazar V, Heidmann T (2002) Epigenetic regulation of an IAP retrotransposon in the aging mouse: progressive demethylation and de-silencing of the element by its repetitive induction. Nucleic Acids Res 30:2365–2373

    Article  PubMed  CAS  Google Scholar 

  104. Wainfan E, Dizik M, Stender M, Christman JK (1989) Rapid appearance of hypomethylated DNA in livers of rats fed cancer-promoting, methyl-deficient diets. Cancer Res 49:4094–4097

    PubMed  CAS  Google Scholar 

  105. Miltenberger RJ, Mynatt RL, Wilkinson JE, Woychik RP (1997) The role of the agouti gene in the yellow obese syndrome. J Nutr 127:1902S–1907S

    PubMed  CAS  Google Scholar 

  106. Wolff GL, Kodell RL, Moore SR, Cooney CA (1998) Maternal epigenetics and methyl supplements affect agouti gene expression in A vy /a mice. FASEB J 12:949–957

    PubMed  CAS  Google Scholar 

  107. Cooney CA, Dave AA, Wolff GL (2002) Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J Nutr 132:2393S–2400S

    PubMed  CAS  Google Scholar 

  108. Fraga MF, Agrelo R, Esteller M (2007) Cross-talk between aging and cancer: the epigenetic language. Ann NY Acad Sci 1100:60–74

    Article  PubMed  CAS  Google Scholar 

  109. Vertino PM, Issa JP, Pereira-Smith OM, Baylin SB (1994) Stabilization of DNA methyltransferase levels and CpG island hypermethylation precede SV40-induced immortalization of human fibroblasts. Cell Growth Differ 5:1395–1402

    PubMed  CAS  Google Scholar 

  110. Choi SW, Mason JB (2000) Folate and carcinogenesis: an integrated scheme. J Nutr 130:129–132

    PubMed  CAS  Google Scholar 

  111. Mehedint MG, Niculescu MD, Craciunescu CN, Zeisel SH (2010) Choline deficiency alters global histone methylation and epigenetic marking at the Re1 site of the calbindin 1 gene. FASEB J 24:184–195

    Article  PubMed  CAS  Google Scholar 

  112. Davison JM, Mellott TJ, Kovacheva VP, Blusztajn JK (2009) Gestational choline supply regulates methylation of histone H3, expression of histone methyltransferases G9a (Kmt1c) and Suv39h1 (Kmt1a), and DNA methylation of their genes in rat fetal liver and brain. J Biol Chem 284:1982–1989

    Article  PubMed  CAS  Google Scholar 

  113. Tryndyak VP, Ross SA, Beland FA, Pogribny IP (2009) Down-regulation of the microRNAs miR-34a, miR-127, and miR-200b in rat liver during hepatocarcinogenesis induced by a methyl-deficient diet. Mol Carcinog 48:479–487

    Article  PubMed  CAS  Google Scholar 

  114. Simone NL, Soule BP, Ly D, Saleh AD, Savage JE, Degraff W, Cook J, Harris CC, Gius D, Mitchell JB (2009) Ionizing radiation-induced oxidative stress alters miRNA expression. PLoS One 4:e6377

    Article  PubMed  CAS  Google Scholar 

  115. Cheng Y, Liu X, Zhang S, Lin Y, Yang J, Zhang C (2009) MicroRNA-21 protects against H2O2-induced injury on cardiac myocytes via its target gene PDCD4. J Mol Cell Cardiol 47:5–14

    Article  PubMed  CAS  Google Scholar 

  116. Wagner-Ecker M, Schwager C, Wirkner U, Abdollahi A, Huber PE (2010) MicroRNA expression after ionizing radiation in human endothelial cells. Radiat Oncol 5:25–34

    Article  PubMed  CAS  Google Scholar 

  117. Oh JS, Kim JJ, Byun JY, Kim IA (2010) Lin28-let7 modulates radiosensitivity of human cancer cells with activation of K-Ras. Int J Radiat Oncol Biol Phys 76:5–8

    Article  PubMed  CAS  Google Scholar 

  118. Chen G, Zhu W, Shi D, Lv L, Zhang C, Liu P, Hu W (2010) MicroRNA-181a sensitizes human malignant glioma U87MG cells to radiation by targeting Bcl-2. Oncol Rep 23:997–1003

    PubMed  CAS  Google Scholar 

  119. Cha HJ, Seong KM, Bae S, Jung JH, Kim CS, Yang KH, Jin YW, An S (2009) Identification of specific microRNAs responding to low and high dose γ-irradiation in the human lymphoblast line IM9. Oncol Rep 22:863–868

    PubMed  CAS  Google Scholar 

  120. Rocha S (2007) Gene regulation under low oxygen: holding your breath for transcription. Trends Biochem Sci 32:389–397

    Article  PubMed  CAS  Google Scholar 

  121. Kenneth NS, Rocha S (2008) Regulation of gene expression by hypoxia. Biochem J 414:19–29

    Article  PubMed  CAS  Google Scholar 

  122. Wilmink GJ, Roth CL, Ibey BL, Ketchum N, Bernhard J, Cerna CZ, Roach WP (2010) Identification of microRNAs associated with hyperthermia-induced cellular stress response. Cell Stress Chaperones 15:1027–1038

    Article  PubMed  CAS  Google Scholar 

  123. Dresios J, Aschrafi A, Owens GC, Vanderklish PW, Edelman GM, Mauro VP (2005) Cold stress-induced protein Rbm3 binds 60S ribosomal subunits, alters microRNA levels, and enhances global protein synthesis. Proc Natl Acad Sci USA 102:1865–1870

    Article  PubMed  CAS  Google Scholar 

  124. Marsit CJ, Eddy K, Kelsey KT (2006) MicroRNA responses to cellular stress. Cancer Res 66:10843–10848

    Article  PubMed  CAS  Google Scholar 

  125. Vasudevan S, Tong Y, Steitz JA (2007) Switching from repression to activation: microRNAs can up-regulate translation. Science 318:1931–1934

    Article  PubMed  CAS  Google Scholar 

  126. Strum JC, Johnson JH, Ward J, Xie H, Feild J, Hester A, Alford A, Waters KM (2009) MicroRNA 132 regulates nutritional stress-induced chemokine production through repression of SirT1. Mol Endocrinol 23:1876–1884

    Article  PubMed  CAS  Google Scholar 

  127. Gaedicke S, Zhang X, Schmelzer C, Lou Y, Doering F, Frank J, Rimbach G (2008) Vitamin E dependent microRNA regulation in rat liver. FEBS Lett 582:3542–3546

    Article  PubMed  CAS  Google Scholar 

  128. Zhang J, Zhang F, Didelot X, Bruce KD, Cagampang FR, Vatish M, Hanson M, Lehnert H, Ceriello A, Byrne CD (2009) Maternal high fat diet during pregnancy and lactation alters hepatic expression of insulin like growth factor-2 and key microRNAs in the adult offspring. BMC Genomics 10:478–489

    Article  PubMed  CAS  Google Scholar 

  129. Stuart TP (1882) Nickel and cobalt: their physiological action on the animal organism. Part I. Toxicology. J Anat Physiol 17:89–123

    PubMed  CAS  Google Scholar 

  130. Klein CB, Conway K, Wang XW, Bhamra RK, Lin XH, Cohen MD, Annab L, Barrett JC, Costa M (1991) Senescence of nickel-transformed cells by an X chromosome: possible epigenetic control. Science 251:796–799

    Article  PubMed  CAS  Google Scholar 

  131. Wang XW, Lin X, Klein CB, Bhamra RK, Lee YW, Costa M (1992) A conserved region in human and Chinese hamster X chromosomes can induce cellular senescence of nickel-transformed Chinese hamster cell lines. Carcinogenesis 13:555–561

    Article  PubMed  CAS  Google Scholar 

  132. Sen P, Costa M (1985) Induction of chromosomal damage in Chinese hamster ovary cells by soluble and particulate nickel compounds: preferential fragmentation of the heterochromatic long arm of the X-chromosome by carcinogenic crystallite NiS particles. Cancer Res 45:2320–2325

    PubMed  CAS  Google Scholar 

  133. Conway K, Wang XW, Xu LS, Costa M (1987) Effect of magnesium on nickel-induced genotoxicity and cell transformation. Carcinogenesis 8:1115–1121

    Article  PubMed  CAS  Google Scholar 

  134. Sen P, Costa M (1986) Pathway of nickel uptake influences its interaction with heterochromatic DNA. Toxicol Appl Pharmacol 84:278–285

    Article  PubMed  CAS  Google Scholar 

  135. Ellen TP, Kluz T, Harder ME, Xiong J, Costa M (2009) Heterochromatinization as a potential mechanism of nickel-induced carcinogenesis. Biochemistry 48:4626–4632

    Article  PubMed  CAS  Google Scholar 

  136. Lee YW, Klein CB, Kargacin B, Salnikow K, Kitahara J, Dowjat K, Zhitkovich A, Christie NT, Costa M (1995) Carcinogenic nickel silences gene expression by chromatin condensation and DNA methylation: a new model for epigenetic carcinogens. Mol Cell Biol 15:2547–2557

    PubMed  CAS  Google Scholar 

  137. Govindarajan B, Klafter R, Miller MS, Mansur C, Mizesko M, Bai X, LaMontagne K Jr, Arbiser JL (2002) Reactive oxygen-induced carcinogenesis causes hypermethylation of p16 Ink4a and activation of MAP kinase. Mol Med 8:1–8

    Article  PubMed  CAS  Google Scholar 

  138. Ji W, Yang L, Yu L, Yuan J, Hu D, Zhang W, Yang J, Pang Y, Li W, Lu J, Fu J, Chen J, Lin Z, Chen W, Zhuang Z (2008) Epigenetic silencing of O6-methylguanine DNA methyltransferase gene in NiS-transformed cells. Carcinogenesis 29:1267–1275

    Article  PubMed  CAS  Google Scholar 

  139. Gonzalo V, Lozano JJ, Munoz J, Balaguer F, Pellise M, de Rodriguez MC, Andreu M, Jover R, Llor X, Giraldez MD, Ocana T, Serradesanferm A, Alonso-Espinaco V, Jimeno M, Cuatrecasas M, Sendino O, Castellvi-Bel S, Castells A (2010) Aberrant gene promoter methylation associated with sporadic multiple colorectal cancer. PLoS One 5:e8777

    Article  PubMed  CAS  Google Scholar 

  140. Hibi K, Sakata M, Yokomizo K, Kitamura YH, Sakuraba K, Shirahata A, Goto T, Mizukami H, Saito M, Ishibashi K, Kigawa G, Nemoto H, Sanada Y (2009) Methylation of the MGMT gene is frequently detected in advanced gastric carcinoma. Anticancer Res 29:5053–5055

    PubMed  CAS  Google Scholar 

  141. Zhang J, Zhang J, Li M, Wu Y, Fan Y, Zhou Y, Tan L, Shao Z, Shi H (2011) Methylation of RAR-β2, RASSF1A, and CDKN2A genes induced by nickel subsulfide and nickel-carcinogenesis in rats. Biomed Environ Sci 24:163–171

    PubMed  CAS  Google Scholar 

  142. Golebiowski F, Kasprzak KS (2005) Inhibition of core histones acetylation by carcinogenic nickel(II). Mol Cell Biochem 279:133–139

    Article  PubMed  CAS  Google Scholar 

  143. Ke Q, Davidson T, Chen H, Kluz T, Costa M (2006) Alterations of histone modifications and transgene silencing by nickel chloride. Carcinogenesis 27:1481–1488

    Article  PubMed  CAS  Google Scholar 

  144. Chen H, Ke Q, Kluz T, Yan Y, Costa M (2006) Nickel ions increase histone H3 lysine 9 dimethylation and induce transgene silencing. Mol Cell Biol 26:3728–3737

    Article  PubMed  CAS  Google Scholar 

  145. Karaczyn AA, Golebiowski F, Kasprzak KS (2006) Ni(II) affects ubiquitination of core histones H2B and H2A. Exp Cell Res 312:3252–3259

    Article  PubMed  CAS  Google Scholar 

  146. Ke Q, Ellen TP, Costa M (2008) Nickel compounds induce histone ubiquitination by inhibiting histone deubiquitinating enzyme activity. Toxicol Appl Pharmacol 228:190–199

    Article  PubMed  CAS  Google Scholar 

  147. Chen H, Giri NC, Zhang R, Yamane K, Zhang Y, Maroney M, Costa M (2009) Nickel ions inhibit histone demethylase JMJD1A and DNA repair enzyme ABH2 by replacing the ferrous iron in the catalytic centers. J Biol Chem 285:7374–7383

    Article  PubMed  CAS  Google Scholar 

  148. Doll R (1958) Cancer of the lung and nose in nickel workers. Br J Ind Med 15:217–223

    PubMed  CAS  Google Scholar 

  149. Doll R, Mathews JD, Morgan LG (1977) Cancers of the lung and nasal sinuses in nickel workers: a reassessment of the period of risk. Br J Ind Med 34:102–105

    PubMed  CAS  Google Scholar 

  150. Doll R, Morgan LG, Speizer FE (1970) Cancers of the lung and nasal sinuses in nickel workers. Br J Cancer 24:623–632

    Article  PubMed  CAS  Google Scholar 

  151. Ren X, McHale CM, Skibola CF, Smith AH, Smith MT, Zhang L (2011) An emerging role for epigenetic dysregulation in arsenic toxicity and carcinogenesis. Environ Health Perspect 119:11–19

    Article  PubMed  CAS  Google Scholar 

  152. Lee-Feldstein A (1986) Cumulative exposure to arsenic and its relationship to respiratory cancer among copper smelter employees. J Occup Med 28:296–302

    PubMed  CAS  Google Scholar 

  153. Lee-Feldstein A (1983) Arsenic and respiratory cancer in humans: follow-up of copper smelter employees in Montana. J Natl Cancer Inst 70:601–610

    PubMed  CAS  Google Scholar 

  154. Enterline PE, Henderson VL, Marsh GM (1987) Exposure to arsenic and respiratory cancer. A reanalysis. Am J Epidemiol 125:929–938

    PubMed  CAS  Google Scholar 

  155. Bertolero F, Pozzi G, Sabbioni E, Saffiotti U (1987) Cellular uptake and metabolic reduction of pentavalent to trivalent arsenic as determinants of cytotoxicity and morphological transformation. Carcinogenesis 8:803–808

    Article  PubMed  CAS  Google Scholar 

  156. Lee TC, Oshimura M, Barrett JC (1985) Comparison of arsenic-induced cell transformation, cytotoxicity, mutation and cytogenetic effects in Syrian hamster embryo cells in culture. Carcinogenesis 6:1421–1426

    Article  PubMed  CAS  Google Scholar 

  157. DiPaolo JA, Casto BC (1979) Quantitative studies of in vitro morphological transformation of Syrian hamster cells by inorganic metal salts. Cancer Res 39:1008–1013

    PubMed  CAS  Google Scholar 

  158. Reichard JF, Schnekenburger M, Puga A (2007) Long term low-dose arsenic exposure induces loss of DNA methylation. Biochem Biophys Res Commun 352:188–192

    Article  PubMed  CAS  Google Scholar 

  159. Mass MJ, Wang L (1997) Arsenic alters cytosine methylation patterns of the promoter of the tumor suppressor gene p53 in human lung cells: a model for a mechanism of carcinogenesis. Mutat Res 386:263–277

    Article  PubMed  CAS  Google Scholar 

  160. Chanda S, Dasgupta UB, Guhamazumder D, Gupta M, Chaudhuri U, Lahiri S, Das S, Ghosh N, Chatterjee D (2006) DNA hypermethylation of promoter of gene p53 and p16 in arsenic-exposed people with and without malignancy. Toxicol Sci 89:431–437

    Article  PubMed  CAS  Google Scholar 

  161. Marsit CJ, Karagas MR, Danaee H, Liu M, Andrew A, Schned A, Nelson HH, Kelsey KT (2006) Carcinogen exposure and gene promoter hypermethylation in bladder cancer. Carcinogenesis 27:112–116

    Article  PubMed  CAS  Google Scholar 

  162. Huang YC, Hung WC, Chen WT, Yu HS, Chai CY (2009) Sodium arsenite-induced DAPK promoter hypermethylation and autophagy via ERK1/2 phosphorylation in human uroepithelial cells. Chem Biol Interact 181:256–262

    Google Scholar 

  163. Majumdar S, Chanda S, Ganguli B, Mazumder DN, Lahiri S, Dasgupta UB (2010) Arsenic exposure induces genomic hypermethylation. Environ Toxicol 25:315–318

    Article  PubMed  CAS  Google Scholar 

  164. Ramirez T, Brocher J, Stopper H, Hock R (2008) Sodium arsenite modulates histone acetylation, histone deacetylase activity and HMGN protein dynamics in human cells. Chromosoma 117:147–157

    Article  PubMed  CAS  Google Scholar 

  165. Li J, Gorospe M, Barnes J, Liu Y (2003) Tumor promoter arsenite stimulates histone H3 phosphoacetylation of proto-oncogenes c-fos and c-jun chromatin in human diploid fibroblasts. J Biol Chem 278:13183–13191

    Article  PubMed  CAS  Google Scholar 

  166. Li J, Chen P, Sinogeeva N, Gorospe M, Wersto RP, Chrest FJ, Barnes J, Liu Y (2002) Arsenic trioxide promotes histone H3 phosphoacetylation at the chromatin of CASPASE-10 in acute promyelocytic leukemia cells. J Biol Chem 277:49504–49510

    Article  PubMed  CAS  Google Scholar 

  167. Jo WJ, Ren X, Chu F, Aleshin M, Wintz H, Burlingame A, Smith MT, Vulpe CD, Zhang L (2009) Acetylated H4K16 by MYST1 protects UROtsa cells from arsenic toxicity and is decreased following chronic arsenic exposure. Toxicol Appl Pharmacol 241:294–302

    Article  PubMed  CAS  Google Scholar 

  168. Zhou X, Sun H, Ellen TP, Chen H, Costa M (2008) Arsenite alters global histone H3 methylation. Carcinogenesis 29:1831–1836

    Article  PubMed  CAS  Google Scholar 

  169. Wang Z, Zhao Y, Smith E, Goodall GJ, Drew PA, Brabletz T, Yang C (2011) Reversal and prevention of arsenic-induced human bronchial epithelial cell malignant transformation by microRNA-200b. Toxicol Sci 121:110–122

    Article  PubMed  CAS  Google Scholar 

  170. Gregory PA, Bracken CP, Bert AG, Goodall GJ (2008) MicroRNAs as regulators of epithelial-mesenchymal transition. Cell Cycle 7:3112–3118

    Article  PubMed  CAS  Google Scholar 

  171. Cui Y, Han Z, Yi H, Song G, Hao C, Xia H, Ma X (2012) MicroRNA-181b and microRNA-9 mediate arsenic-induced angiogenesis via NRP1. J Cell Physiol 227:772–783

    Article  PubMed  CAS  Google Scholar 

  172. Cao Y, Yu SL, Wang Y, Guo GY, Ding Q, An RH (2011) MicroRNA-dependent regulation of PTEN after arsenic trioxide treatment in bladder cancer cell line T24. Tumour Biol 32:179–188

    Article  PubMed  CAS  Google Scholar 

  173. Dillon CT, Lay PA, Cholewa M, Legge GJ, Bonin AM, Collins TJ, Kostka KL, Shea-McCarthy G (1997) Microprobe X-ray absorption spectroscopic determination of the oxidation state of intracellular chromium following exposure of V79 Chinese hamster lung cells to genotoxic chromium complexes. Chem Res Toxicol 10:533–535

    Article  PubMed  CAS  Google Scholar 

  174. Ortega R, Fayard B, Salome M, Deves G, Susini J (2005) Chromium oxidation state imaging in mammalian cells exposed in vitro to soluble or particulate chromate compounds. Chem Res Toxicol 18:1512–1519

    Article  PubMed  CAS  Google Scholar 

  175. Nickens KP, Patierno SR, Ceryak S (2010) Chromium genotoxicity: a double-edged sword. Chem Biol Interact 188:276–288

    Article  PubMed  CAS  Google Scholar 

  176. Klein CB, Su L, Bowser D, Leszczynska J (2002) Chromate-induced epimutations in mammalian cells. Environ Health Perspect 110(Suppl 5):739–743

    Article  PubMed  CAS  Google Scholar 

  177. Kondo K, Takahashi Y, Hirose Y, Nagao T, Tsuyuguchi M, Hashimoto M, Ochiai A, Monden Y, Tangoku A (2006) The reduced expression and aberrant methylation of p16INK4a in chromate workers with lung cancer. Lung Cancer 53:295–302

    Article  PubMed  Google Scholar 

  178. Maier A, Dalton TP, Puga A (2000) Disruption of dioxin-inducible phase I and phase II gene expression patterns by cadmium, chromium, and arsenic. Mol Carcinog 28:225–235

    Article  PubMed  CAS  Google Scholar 

  179. Wei YD, Tepperman K, Huang MY, Sartor MA, Puga A (2004) Chromium inhibits transcription from polycyclic aromatic hydrocarbon-inducible promoters by blocking the release of histone deacetylase and preventing the binding of p300 to chromatin. J Biol Chem 279:4110–4119

    Article  PubMed  CAS  Google Scholar 

  180. Schnekenburger M, Talaska G, Puga A (2007) Chromium cross-links histone deacetylase 1-DNA methyltransferase 1 complexes to chromatin, inhibiting histone-remodeling marks critical for transcriptional activation. Mol Cell Biol 27:7089–7101

    Article  PubMed  CAS  Google Scholar 

  181. Takahashi Y, Kondo K, Hirose T, Nakagawa H, Tsuyuguchi M, Hashimoto M, Sano T, Ochiai A, Monden Y (2005) Microsatellite instability and protein expression of the DNA mismatch repair gene, hMLH1, of lung cancer in chromate-exposed workers. Mol Carcinog 42:150–158

    Article  PubMed  CAS  Google Scholar 

  182. Sun H, Zhou X, Chen H, Li Q, Costa M (2009) Modulation of histone methylation and MLH1 gene silencing by hexavalent chromium. Toxicol Appl Pharmacol 237:258–266

    Article  PubMed  CAS  Google Scholar 

  183. Stanley JS, Griffin JB, Zempleni J (2001) Biotinylation of histones in human cells. Effects of cell proliferation. Eur J Biochem 268:5424–5429

    Article  PubMed  CAS  Google Scholar 

  184. Bao B, Pestinger V, Hassan YI, Borgstahl GE, Kolar C, Zempleni J (2011) Holocarboxylase synthetase is a chromatin protein and interacts directly with histone H3 to mediate biotinylation of K9 and K18. J Nutr Biochem 22:470–475

    Article  PubMed  CAS  Google Scholar 

  185. Hymes J, Fleischhauer K, Wolf B (1995) Biotinylation of histones by human serum biotinidase: assessment of biotinyl-transferase activity in sera from normal individuals and children with biotinidase deficiency. Biochem Mol Med 56:76–83

    Article  PubMed  CAS  Google Scholar 

  186. Xia B, Yang LQ, Huang HY, Pang L, Hu GH, Liu QC, Yuan JH, Liu JJ, Xia YB, Zhuang ZX (2011) Chromium(VI) causes down regulation of biotinidase in human bronchial epithelial cells by modification of histone acetylation. Toxicol Lett 205:140–145

    Article  PubMed  CAS  Google Scholar 

  187. Waalkes MP (2003) Cadmium carcinogenesis. Mutat Res 533:107–120

    Article  PubMed  CAS  Google Scholar 

  188. Waisberg M, Joseph P, Hale B, Beyersmann D (2003) Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology 192:95–117

    Article  PubMed  CAS  Google Scholar 

  189. Filipič M, Hei TK (2004) Mutagenicity of cadmium in mammalian cells: implication of oxidative DNA damage. Mutat Res 546:81–91

    Article  PubMed  CAS  Google Scholar 

  190. Rossman TG, Roy NK, Lin WC (1992) Is cadmium genotoxic? IARC Sci Publ 118:367–375

    PubMed  CAS  Google Scholar 

  191. Takiguchi M, Achanzar WE, Qu W, Li G, Waalkes MP (2003) Effects of cadmium on DNA-(cytosine-5) methyltransferase activity and DNA methylation status during cadmium-induced cellular transformation. Exp Cell Res 286:355–365

    Article  PubMed  CAS  Google Scholar 

  192. Huang D, Zhang Y, Qi Y, Chen C, Ji W (2008) Global DNA hypomethylation, rather than reactive oxygen species (ROS), a potential facilitator of cadmium-stimulated K562 cell proliferation. Toxicol Lett 179:43–47

    Article  PubMed  CAS  Google Scholar 

  193. Jiang G, Xu L, Song S, Zhu C, Wu Q, Zhang L, Wu L (2008) Effects of long-term low-dose cadmium exposure on genomic DNA methylation in human embryo lung fibroblast cells. Toxicology 244:49–55

    Article  PubMed  CAS  Google Scholar 

  194. Benbrahim-Tallaa L, Waterland RA, Dill AL, Webber MM, Waalkes MP (2007) Tumor suppressor gene inactivation during cadmium-induced malignant transformation of human prostate cells correlates with overexpression of de novo DNA methyltransferase. Environ Health Perspect 115:1454–1459

    PubMed  CAS  Google Scholar 

  195. Zhang J, Fu Y, Li J, Wang J, He B, Xu S (2009) Effects of subchronic cadmium poisoning on DNA methylation in hens. Environ Toxicol Pharmacol 27:345–349

    Article  PubMed  CAS  Google Scholar 

  196. Zhu H, Li K, Liang J, Zhang J, Wu Q (2011) Changes in the levels of DNA methylation in testis and liver of SD rats neonatally exposed to 5-aza-2′-deoxycytidine and cadmium. J Appl Toxicol 31:484–495

    Google Scholar 

  197. Onishchenko N, Tamm C, Vahter M, Hökfelt T, Johnson JA, Johnson DA, Ceccatelli S (2007) Developmental exposure to methylmercury alters learning and induces depression-like behavior in male mice. Toxicol Sci 97:428–437

    Article  PubMed  CAS  Google Scholar 

  198. Onishchenko N, Karpova N, Sabri F, Castrén E, Ceccatelli S (2008) Long-lasting depression-like behavior and epigenetic changes of BDNF gene expression induced by perinatal exposure to methylmercury. J Neurochem 106:1378–1387

    Article  PubMed  CAS  Google Scholar 

  199. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115:787–798

    Article  PubMed  CAS  Google Scholar 

  200. Gorski JA, Zeiler SR, Tamowski S, Jones KR (2003) Brain-derived neurotrophic factor is required for the maintenance of cortical dendrites. J Neurosci 23:6856–6865

    PubMed  CAS  Google Scholar 

  201. Desaulniers D, Xiao GH, Lian H, Feng YL, Zhu J, Nakal J, Bowers WJ (2009) Effects of mixtures of polychlorinated biphenyls, methylmercury, and organochlorine pesticides on hepatic DNA methylation in prepubertal female Sprague-Dawley rats. Int J Toxicol 28:294–307

    Article  PubMed  CAS  Google Scholar 

  202. Alexandrov PN, Zhao Y, Pogue AI, Tarr MA, Kruck TP, Percy ME, Cui JG, Lukiw WJ (2005) Synergistic effects of iron and aluminum on stress-related gene expression in primary human neural cells. J Alzheimers Dis 8:117–127

    PubMed  CAS  Google Scholar 

  203. Pogue AI, Li YY, Cui JG, Zhao Y, Kruck TP, Percy ME, Tarr MA, Lukiw WJ (2009) Characterization of an NF-κB-regulated, miRNA-146a-mediated down-regulation of complement factor H (CFH) in metal-sulfate-stressed human brain cells. J Inorg Biochem 103:1591–1595

    Article  PubMed  CAS  Google Scholar 

  204. Lukiw WJ, Pogue AI (2007) Induction of specific micro RNA (miRNA) species by ROS-generating metal sulfates in primary human brain cells. J Inorg Biochem 101:1265–1269

    Article  PubMed  CAS  Google Scholar 

  205. Sasaki H, Matsui Y (2008) Epigenetic events in mammalian germ-cell development: reprogramming and beyond. Nat Rev Genet 9:129–140

    Article  PubMed  CAS  Google Scholar 

  206. Corry GN, Tanasijevic B, Barry ER, Krueger W, Rasmussen TP (2009) Epigenetic regulatory mechanisms during preimplantation development. Birth Defects Res C Embryo Today 87:297–313

    Article  PubMed  CAS  Google Scholar 

  207. Calafat AM, Kuklenyik Z, Reidy JA, Caudill SP, Ekong J, Needham LL (2005) Urinary concentrations of bisphenol A and 4-nonylphenol in a human reference population. Environ Health Perspect 113:391–395

    Article  PubMed  CAS  Google Scholar 

  208. Ho SM, Tang WY, Belmonte de Frausto J, Prins GS (2006) Developmental exposure to estradiol and bisphenol A increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 variant 4. Cancer Res 66:5624–5632

    Article  PubMed  CAS  Google Scholar 

  209. Dolinoy DC, Huang D, Jirtle RL (2007) Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc Natl Acad Sci USA 104:13056–13061

    Article  PubMed  CAS  Google Scholar 

  210. Yaoi T, Itoh K, Nakamura K, Ogi H, Fujiwara Y, Fushiki S (2008) Genome-wide analysis of epigenomic alterations in fetal mouse forebrain after exposure to low doses of bisphenol A. Biochem Biophys Res Commun 376:563–567

    Article  PubMed  CAS  Google Scholar 

  211. Bromer JG, Zhou Y, Taylor MB, Doherty L, Taylor HS (2010) Bisphenol-A exposure in utero leads to epigenetic alterations in the development programming of uterine estrogen response. FASEB J 24:2273–2280

    Article  PubMed  CAS  Google Scholar 

  212. Doherty LF, Bromer JG, Zhou Y, Aldad TS, Taylor HS (2010) In utero exposure to diethylstilbestrol (DES) or bisphenol-A (BPA) increases EZH2 expression in the mammary gland: an epigenetic mechanism linking endocrine disruptors to breast cancer. Horm Cancer 1:146–155

    Article  PubMed  CAS  Google Scholar 

  213. Kleer CG, Cao Q, Varambally S, Shen R, Ota I, Tomlins SA, Ghosh D, Sewalt RG, Otte AP, Hayes DF, Sabel MS, Livant D, Weiss SJ, Rubin MA, Chinnaiyan AM (2003) EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci USA 100:11606–11611

    Article  PubMed  CAS  Google Scholar 

  214. Doshi T, Mehta SS, Dighe V, Balasinor N, Vanage G (2011) Hypermethylation of estrogen receptor promoter region in adult testis of rats exposed neonatally to bisphenol A. Toxicology 289:74–82

    Article  PubMed  CAS  Google Scholar 

  215. Avissar-Whiting M, Veiga K, Uhl K, Maccani M, Gagne L, Moen E, Marsit CJ (2010) Bisphenol A exposure leads to specific microRNA alterations in placental cells. Reprod Toxicol 29:401–406

    Article  PubMed  CAS  Google Scholar 

  216. Taganov KD, Boldin MP, Chang KJ, Baltimore D (2006) NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA 103:12481–12486

    Article  PubMed  CAS  Google Scholar 

  217. Newbold RR, Padilla-Banks E, Jefferson WN (2006) Adverse effects of the model environmental estrogen diethylstilbestrol are transmitted to subsequent generations. Endocrinology 147(Suppl 6):S11–S17

    Article  PubMed  CAS  Google Scholar 

  218. Lu LJ, Liehr JG, Sirbasku DA, Randerath E, Randerath K (1988) Hypomethylation of DNA in estrogen-induced and -dependent hamster kidney tumors. Carcinogenesis 9:925–929

    Article  PubMed  CAS  Google Scholar 

  219. Li S, Washburn KA, Moore R, Uno T, Teng C, Newbold RR, McLachlan JA, Negishi M (1997) Developmental exposure to diethylstilbestrol elicits demethylation of estrogen-responsive lactoferrin gene in mouse uterus. Cancer Res 57:4356–4359

    PubMed  CAS  Google Scholar 

  220. Tang WY, Newbold R, Mardilovich K, Jefferson W, Cheng RY, Medvedovic M, Ho SM (2008) Persistent hypomethylation in the promoter of nucleosomal binding protein 1 (Nsbp1) correlates with overexpression of Nsbp1 in mouse uteri neonatally exposed to diethylstilbestrol or genistein. Endocrinology 149:5922–5931

    Article  PubMed  CAS  Google Scholar 

  221. Sato K, Fukata H, Kogo Y, Ohgane J, Shiota K, Mori C (2009) Neonatal exposure to diethylstilbestrol alters expression of DNA methyltransferases and methylation of genomic DNA in the mouse uterus. Endocr J 56:131–139

    Article  PubMed  CAS  Google Scholar 

  222. Sato K, Fukata H, Kogo Y, Ohgane J, Shiota K, Mori C (2006) Neonatal exposure to diethylstilbestrol alters the expression of DNA methyltransferases and methylation of genomic DNA in the epididymis of mice. Endocr J 53:331–337

    Article  PubMed  CAS  Google Scholar 

  223. Bredfeldt TG, Greathouse KL, Safe SH, Hung MC, Bedford MT, Walker CL (2010) Xenoestrogen-induced regulation of EZH2 and histone methylation via estrogen receptor signaling to PI3K/AKT. Mol Endocrinol 24:993–1006

    Article  PubMed  CAS  Google Scholar 

  224. Cha TL, Zhou BP, Xia W, Wu Y, Yang CC, Chen CT, Ping B, Otte AP, Hung MC (2005) Akt-mediated phosphorylation of EZH2 suppresses methylation of lysine 27 in histone H3. Science 310:306–310

    Article  PubMed  CAS  Google Scholar 

  225. Hsu PY, Deatherage DE, Rodriguez BA, Liyanarachchi S, Weng YI, Zuo T, Liu J, Cheng AS, Huang TH (2009) Xenoestrogen-induced epigenetic repression of microRNA-9-3 in breast epithelial cells. Cancer Res 69:5936–5945

    Article  PubMed  CAS  Google Scholar 

  226. Kelce WR, Monosson E, Gamcsik MP, Laws SC, Gray LE Jr (1994) Environmental hormone disruptors: evidence that vinclozolin developmental toxicity is mediated by antiandrogenic metabolites. Toxicol Appl Pharmacol 126:276–285

    Article  PubMed  CAS  Google Scholar 

  227. Anway MD, Cupp AS, Uzumcu M, Skinner MK (2005) Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 308:1466–1469

    Article  PubMed  CAS  Google Scholar 

  228. Chang HS, Anway MD, Rekow SS, Skinner MK (2006) Transgenerational epigenetic imprinting of the male germline by endocrine disruptor exposure during gonadal sex determination. Endocrinology 147:5524–5541

    Article  PubMed  CAS  Google Scholar 

  229. Schneider S, Kaufmann W, Buesen R, van Ravenzwaay B (2008) Vinclozolin—the lack of a transgenerational effect after oral maternal exposure during organogenesis. Reprod Toxicol 25:352–360

    Article  PubMed  CAS  Google Scholar 

  230. Crews D, Gore AC, Hsu TS, Dangleben NL, Spinetta M, Schallert T, Anway MD, Skinner MK (2007) Transgenerational epigenetic imprints on mate preference. Proc Natl Acad Sci USA 104:5942–5946

    Article  PubMed  CAS  Google Scholar 

  231. Nilsson EE, Anway MD, Stanfield J, Skinner MK (2008) Transgenerational epigenetic effects of the endocrine disruptor vinclozolin on pregnancies and female adult onset disease. Reproduction 135:713–721

    Article  PubMed  CAS  Google Scholar 

  232. Anway MD, Leathers C, Skinner MK (2006) Endocrine disruptor vinclozolin induced epigenetic transgenerational adult-onset disease. Endocrinology 147:5515–5523

    Article  PubMed  CAS  Google Scholar 

  233. Guerrero-Bosagna C, Settles M, Lucker B, Skinner MK (2010) Epigenetic transgenerational actions of vinclozolin on promoter regions of the sperm epigenome. PLoS One 5:e13100

    Article  PubMed  CAS  Google Scholar 

  234. Skinner MK, Manikkam M, Guerrero-Bosagna C (2011) Epigenetic transgenerational actions of endocrine disruptors. Reprod Toxicol 31:337–343

    Article  PubMed  CAS  Google Scholar 

  235. Zama AM, Uzumcu M (2009) Fetal and neonatal exposure to the endocrine disruptor methoxychlor causes epigenetic alterations in adult ovarian genes. Endocrinology 150:4681–4691

    Article  PubMed  CAS  Google Scholar 

  236. Cupp AS, Uzumcu M, Suzuki H, Dirks K, Phillips B, Skinner MK (2003) Effect of transient embryonic in vivo exposure to the endocrine disruptor methoxychlor on embryonic and postnatal testis development. J Androl 24:736–745

    PubMed  CAS  Google Scholar 

  237. Uzumcu M, Suzuki H, Skinner MK (2008) Effect of the anti-androgenic endocrine disruptor vinclozolin on embryonic testis cord formation and postnatal testis development and function. Reprod Toxicol 18:765–774

    Article  CAS  Google Scholar 

  238. Stouder C, Paoloni-Giacobino A (2010) Transgenerational effects of the endocrine disruptor vinclozolin on the methylation pattern of imprinted genes in the mouse sperm. Reproduction 139:373–379

    Article  PubMed  CAS  Google Scholar 

  239. Peters A (2005) Particulate matter and heart disease: evidence from epidemiological studies. Toxicol Appl Pharmacol 207(Suppl 2):477–482

    Article  PubMed  CAS  Google Scholar 

  240. Franchini M, Mannucci PM (2009) Particulate air pollution and cardiovascular risk: short-term and long-term effects. Semin Thromb Hemost 35:665–670

    Article  PubMed  CAS  Google Scholar 

  241. Izzotti A, Parodi S, Quaglia A, Fare C, Vercelli M (2000) The relationship between urban airborne pollution and short-term mortality: quantitative and qualitative aspects. Eur J Epidemiol 16:1027–1034

    Article  PubMed  CAS  Google Scholar 

  242. Vineis P, Husgafvel-Pursiainen K (2005) Air pollution and cancer: biomarker studies in human populations. Carcinogenesis 26:1846–1855

    Article  PubMed  CAS  Google Scholar 

  243. Li N, Xia T, Nel AE (2008) The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles. Free Radic Biol Med 44:1689–1699

    Article  PubMed  CAS  Google Scholar 

  244. Hou M, Morishita Y, Iljima T, Inadome Y, Mase K, Dai Y, Noguchi M (1999) DNA methylation and expression of p16 INK4A gene in pulmonary adenocarcinomas and anthracosis in background lung. Int J Cancer 84:609–613

    Article  PubMed  CAS  Google Scholar 

  245. Belinsky SA, Snow SS, Nikula KJ, Finch GL, Tellez CS, Palmisano WA (2002) Aberrant CpG island methylation of the p16 INK4a and estrogen receptor genes in rat lung tumors induced by particulate carcinogens. Carcinogenesis 23:335–339

    Article  PubMed  CAS  Google Scholar 

  246. Hou L, Zhang X, Tarantini L, Nordio F, Bonzini M, Angelici L, Marinelli B, Rizzo G, Cantone L, Apostoli P, Bertazzi PA, Baccarelli A (2011) Ambient PM exposure and DNA methylation in tumor suppressor genes: a cross-sectional study. Part Fibre Toxicol 8:25–34

    Article  PubMed  CAS  Google Scholar 

  247. Baccarelli A, Wright RO, Bollati V, Tarantini L, Litonjua AA, Suh HH, Zanobetti A, Sparrow D, Vokonas PS, Schwartz J (2009) Rapid DNA methylation changes after exposure to traffic particles. Am J Respir Crit Care Med 179:572–578

    Article  PubMed  CAS  Google Scholar 

  248. Tarantini L, Bonzini M, Apostoli P, Pegoraro V, Bollati V, Marinelli B, Cantone L, Rizzo G, Hou L, Schwartz J, Bertazzi PA, Baccarelli A (2009) Effects of particulate matter on genomic DNA methylation content and iNOS promoter methylation. Environ Health Perspect 117:217–222

    PubMed  CAS  Google Scholar 

  249. Borm PJ, Kelly F, Kunzli N, Schins RP, Donaldson K (2007) Oxidant generation by particulate matter: from biologically effective dose to a promising, novel metric. Occup Environ Med 64:73–74

    Article  PubMed  Google Scholar 

  250. Valinluck V, Tsai HH, Rogstad DK, Burdzy A, Bird A, Sowers LC (2004) Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2). Nucleic Acids Res 32:4100–4108

    Article  PubMed  CAS  Google Scholar 

  251. Zhen J, Lu H, Wang XQ, Vaziri ND, Zhou XJ (2008) Upregulation of endothelial and inducible nitric oxide synthase expression by reactive oxygen species. Am J Hypertens 21:28–34

    Article  PubMed  CAS  Google Scholar 

  252. Cantone L, Nordio F, Hou L, Apostoli P, Bonzini M, Tarantini L, Angelici L, Bollati V, Zanobetti A, Schwartz J, Bertazzi PA, Baccarelli A (2011) Inhalable metal-rich air particles and histone H3K4 dimethylation and H3K9 acetylation in a cross-sectional study of steel workers. Environ Health Perspect 119:964–969

    Article  PubMed  CAS  Google Scholar 

  253. Bollati V, Marinelli B, Apostoli P, Bonzini M, Nordio F, Hoxha M, Pegoraro V, Motta V, Tarantini L, Cantone L, Schwartz J, Bertazzi PA, Baccarelli A (2010) Exposure to metal-rich particulate matter modifies the expression of candidate microRNAs in peripheral blood leukocytes. Environ Health Perspect 118:763–768

    Article  PubMed  CAS  Google Scholar 

  254. Babar IA, Slack FJ, Weidhaas JB (2008) miRNA modulation of the cellular stress response. Future Oncol 4:289–298

    Article  PubMed  CAS  Google Scholar 

  255. Xiao C, Rajewsky K (2009) MicroRNA control in the immune system: basic principles. Cell 136:26–36

    Article  PubMed  CAS  Google Scholar 

  256. Jardim MJ, Fry RC, Jaspers I, Dailey L, Diaz-Sanchez D (2009) Disruption of microRNA expression in human airway cells by diesel exhaust particles is linked to tumorigenesis-associated pathways. Environ Health Perspect 117:1745–1751

    PubMed  CAS  Google Scholar 

  257. Farraj AK, Hazari MS, Haykal-Coates N, Lamb C, Winsett DW, Ge Y, Ledbetter AD, Carll AP, Bruno M, Ghio A, Costa DL (2011) ST depression, arrhythmia, vagal dominance, and reduced cardiac micro-RNA in particulate-exposed rats. Am J Respir Cell Mol Biol 44:185–196

    Article  PubMed  CAS  Google Scholar 

  258. Latronico MV, Condorelli G (2009) MicroRNAs and cardiac pathology. Nat Rev Cardiol 6:419–429

    Article  PubMed  CAS  Google Scholar 

  259. Condorelli G, Latronico MV, Dorn GW 2nd (2010) microRNAs in heart disease: putative novel therapeutic targets. Eur Heart J 31:649–658

    Article  PubMed  CAS  Google Scholar 

  260. Osada H, Takahashi T (2002) Genetic alterations of multiple tumor suppressors and oncogenes in the carcinogenesis and progression of lung cancer. Oncogene 21:7421–7434

    Article  PubMed  CAS  Google Scholar 

  261. Schwartz AG, Prysak GM, Bock CH, Cote ML (2007) The molecular epidemiology of lung cancer. Carcinogenesis 28:507–518

    Article  PubMed  CAS  Google Scholar 

  262. Belinsky SA, Nikula KJ, Palmisano WA, Michels R, Saccomanno G, Gabrielson E, Baylin SB, Herman JG (1998) Aberrant methylation of p16 INK4a is an early event in lung cancer and a potential biomarker for early diagnosis. Proc Natl Acad Sci USA 95:11891–11896

    Article  PubMed  CAS  Google Scholar 

  263. Palmisano WA, Divine KK, Saccomanno G, Gilliland FD, Baylin SB, Herman JG, Belinsky SA (2000) Predicting lung cancer by detecting aberrant promoter methylation in sputum. Cancer Res 60:5954–5958

    PubMed  CAS  Google Scholar 

  264. Esteller M, Hamilton SR, Burger PC, Baylin SB, Herman JG (1999) Inactivation of the DNA repair gene O 6 -methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. Cancer Res 59:793–797

    PubMed  CAS  Google Scholar 

  265. Belinsky SA, Palmisano WA, Gilliland FD, Crooks LA, Divine KK, Winters SA, Grimes MJ, Harms HJ, Tellez CS, Smith TM, Moots PP, Lechner JF, Stidley CA, Crowell RE (2002) Aberrant promoter methylation in bronchial epithelium and sputum from current and former smokers. Cancer Res 62:2370–2377

    PubMed  CAS  Google Scholar 

  266. Liu F, Killian JK, Yang M, Walker RL, Hong JA, Zhang M, Davis S, Zhang Y, Hussain M, Xi S, Rao M, Meltzer PA, Schrump DS (2010) Epigenomic alterations and gene expression profiles in respiratory epithelia exposed to cigarette smoke condensate. Oncogene 29:3650–3664

    Article  PubMed  CAS  Google Scholar 

  267. Pulling LC, Vuillemenot BR, Hutt JA, Devereux TR, Belinsky SA (2004) Aberrant promoter hypermethylation of the death-associated protein kinase gene is early and frequent in murine lung tumors induced by cigarette smoke and tobacco carcinogens. Cancer Res 64:3844–3848

    Article  PubMed  CAS  Google Scholar 

  268. Izzotti A, Calin GA, Steele VE, Cartiglia C, Longobardi M, Croce CM, De Flora S (2010) Chemoprevention of cigarette smoke-induced alterations of microRNA expression in rat lungs. Cancer Prev Res 3:62–72

    Article  CAS  Google Scholar 

  269. Izzotti A, Calin GA, Steele VE, Croce CM, De Flora S (2009) Relationships of microRNA expression in mouse lung with age and exposure to cigarette smoke and light. FASEB J 23:3243–3250

    Article  PubMed  CAS  Google Scholar 

  270. Izzotti A, Calin GA, Arrigo P, Steele VE, Croce CM, De Flora S (2009) Downregulation of microRNA expression in the lungs of rats exposed to cigarette smoke. FASEB J 23:806–812

    Article  PubMed  CAS  Google Scholar 

  271. Izzotti A, Larghero P, Cartiglia C, Longobardi M, Pfeffer U, Steele VE, De Flora S (2010) Modulation of microRNA expression by budesonide, phenethyl isothiocyanate and cigarette smoke in mouse liver and lung. Carcinogenesis 31:894–901

    Article  PubMed  CAS  Google Scholar 

  272. Izzotti A, Bagnasco M, Cartiglia C, Longobardi M, Balansky RM, Merello A, Lubet RA, De Flora S (2005) Chemoprevention of genome, transcriptome, and proteome alterations induced by cigarette smoke in rat lung. Eur J Cancer 41:1864–1874

    Article  PubMed  CAS  Google Scholar 

  273. Schembri F, Sridhar S, Perdomo C, Gustafson AM, Zhang X, Ergun A, Lu J, Liu G, Zhang X, Bowers J, Vaziri C, Ott K, Sensinger K, Collins JJ, Brody JS, Getts R, Lenburg ME, Spira A (2009) MicroRNAs as modulators of smoking-induced gene expression changes in human airway epithelium. Proc Natl Acad Sci USA 106:2319–2324

    Article  PubMed  CAS  Google Scholar 

  274. Hecht SS (2006) Cigarette smoking: cancer risks, carcinogens, and mechanisms. Langenbecks Arch Surg 391:603–613

    Article  PubMed  Google Scholar 

  275. Kalscheuer S, Zhang X, Zeng Y, Upadhyaya P (2008) Differential expression of microRNAs in early-stage neoplastic transformation in the lungs of F344 rats chronically treated with the tobacco carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Carcinogenesis 29:2394–2399

    Article  PubMed  CAS  Google Scholar 

  276. Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, Stephens RM, Okamoto A, Yokota J, Tanaka T, Calin GA, Liu CG, Croce CM, Harris CC (2006) Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9:189–198

    Article  PubMed  CAS  Google Scholar 

  277. Glaheta RA, Cinatl J Jr (2002) Anti-tumor mechanisms of valproate: a novel role for an old drug. Med Res Rev 22:492–511

    Article  CAS  Google Scholar 

  278. Phiel CJ, Zhang F, Huang EY, Guenther MG, Lazar MA, Klein PS (2001) Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem 276:36734–36741

    Article  PubMed  CAS  Google Scholar 

  279. Ornoy A (2009) Valproic acid in pregnancy: how much are we endangering the embryo and fetus? Reprod Toxicol 28:1–10

    Article  PubMed  CAS  Google Scholar 

  280. Gurvich N, Berman MG, Wittner BS, Gentleman RC, Klein PS, Green JB (2005) Association of valproate-induced teratogenesis with histone deacetylase inhibition in vivo. FASEB J 19:1166–1168

    PubMed  CAS  Google Scholar 

  281. Gao FB (2008) Posttranscriptional control of neuronal development by microRNA networks. Trends Neurosci 31:20–26

    Article  PubMed  CAS  Google Scholar 

  282. Zhou R, Yuan P, Wang Y, Hunsberger JG, Elkahloun A, Wei Y, Damschroder-Williams P, Du J, Chen G, Manji HK (2009) Evidence for selective microRNAs and their effectors as common long-term targets for the actions of mood stabilizers. Neuropsychopharmacology 34:1395–1405

    Article  PubMed  CAS  Google Scholar 

  283. Chen H, Wang N, Burmeister M, McInnis MG (2009) MicroRNA expression changes in lymphoblastoid cell lines in response to lithium treatment. Int J Neuropsychopharmacol 12:975–981

    Article  PubMed  CAS  Google Scholar 

  284. Fukushima T, Hamada Y, Yamada H, Horii I (2007) Changes of micro-RNA expression in rat liver treated by acetaminophen or carbon tetrachloride―regulating role of micro-RNA for RNA expression. J Toxicol Sci 32:401–409

    Article  PubMed  CAS  Google Scholar 

  285. Amar PJ, Schiff ER (2007) Acetaminophen safety and hepatotoxicity—where do we go from here? Exp Opin Drug Saf 6:341–355

    Article  CAS  Google Scholar 

  286. Rood AS, McGavran PD, Aanenson JW, Till JE (2001) Stochastic estimates of exposure and cancer risk from carbon tetrachloride released to the air from the rocky flats plant. Risk Anal 21:675–695

    Article  PubMed  CAS  Google Scholar 

  287. Recknagel RO (1967) Carbon tetrachloride hepatotoxicity. Pharmacol Rev 19:145–208

    PubMed  CAS  Google Scholar 

  288. Wang K, Zhang S, Marzolf B, Troisch P, Brightman A, Hu Z, Hood LE, Galas DJ (2009) Circulating microRNAs, potential biomarkers for drug-induced liver injury. Proc Natl Acad Sci USA 106:4402–4407

    Article  PubMed  CAS  Google Scholar 

  289. Phillips DH (2001) Understanding the genotoxicity of tamoxifen? Carcinogenesis 22:839–849

    Article  PubMed  CAS  Google Scholar 

  290. Tryndyak VP, Muskhelishvili L, Kovalchuk O, Rodriguez-Juarez R, Montgomery B, Churchwell MI, Ross SA, Beland FA, Pogribny IP (2006) Effect of long-term tamoxifen exposure on genotoxic and epigenetic changes in rat liver: implications for tamoxifen-induced hepatocarcinogenesis. Carcinogenesis 27:1713–1720

    Article  PubMed  CAS  Google Scholar 

  291. Pogribny IP, Tryndyak VP, Boyko A, Rodriguez-Juarez R, Beland FA, Kovalchuk O (2007) Induction of microRNAome deregulation in rat liver by long-term tamoxifen exposure. Mutat Res 619:30–37

    Article  PubMed  CAS  Google Scholar 

  292. Gonzalo S, Garcia-Cao M, Fraga MF, Schotta G, Peters AH, Cotter SE, Eguia R, Dean DC, Esteller M, Jenuwein T, Blasco MA (2005) Role of the RB1 family in stabilizing histone methylation at constitutive heterochromatin. Nat Cell Biol 7:420–428

    Article  PubMed  CAS  Google Scholar 

  293. Pogribny IP, Muskhelishvili L, Tryndyak VP, Beland FA (2011) The role of epigenetic events in genotoxic hepatocarcinogenesis induced by 2-acetylaminofluorene. Mutat Res 722:106–113

    Article  PubMed  CAS  Google Scholar 

  294. Bagnyukova TV, Tryndyak VP, Montgomery B, Churchwell MI, Karpf AR, James SR, Muskhelishvili L, Beland FA, Pogribny IP (2008) Genetic and epigenetic changes in rat preneoplastic liver tissue induced by 2-acetylaminofluorene. Carcinogenesis 29:638–646

    Article  PubMed  CAS  Google Scholar 

  295. Gonzalez FJ, Peters JM, Cattley RC (1998) Mechanism of action of the nongenotoxic peroxisome proliferators: role of the peroxisome proliferator-activator receptor α. J Natl Cancer Inst 90:1702–1709

    Article  PubMed  CAS  Google Scholar 

  296. Shah YM, Morimura K, Tang Q, Tanabe T, Takagi M, Gonzalez FJ (2007) Peroxisome proliferator-activated receptor α regulates a microRNA-mediated signaling cascade responsible for hepatocellular proliferation. Mol Cell Biol 27:4238–4247

    Article  PubMed  CAS  Google Scholar 

  297. Hammond SM (2006) MicroRNAs as oncogenes. Curr Opin Genet Dev 16:4–9

    Article  PubMed  CAS  Google Scholar 

  298. Rossi L, Bonmassar E, Faraoni I (2007) Modification of miR gene expression pattern in human colon cancer cells following exposure to 5-fluorouracil in vitro. Pharmacol Res 56:248–253

    Article  PubMed  CAS  Google Scholar 

  299. Zhang B, Pan X (2009) RDX induces aberrant expression of microRNAs in mouse brain and liver. Environ Health Perspect 117:231–240

    Article  PubMed  CAS  Google Scholar 

  300. Mellios N, Huang HS, Grigorenko A, Rogaev E, Akbarian S (2008) A set of differentially expressed miRNAs, including miR-30a-5p, act as post-transcriptional inhibitors of BDNF in prefrontal cortex. Hum Mol Genet 17:3030–3042

    Article  PubMed  CAS  Google Scholar 

  301. Viberg H, Mundy W, Eriksson P (2008) Neonatal exposure to decabrominated diphenyl ether (PBDE 209) results in changes in BDNF, CaMKII and GAP-43 biochemical substrates of neuronal survival, growth, and synaptogenesis. Neurotoxicology 29:152–159

    Article  PubMed  CAS  Google Scholar 

  302. Onishchenko N, Karpova N, Sabri F, Castren E, Ceccatelli S (2008) Long-lasting depression-like behavior and epigenetic changes of BDNF gene expression induced by perinatal exposure to methylmercury. J Neurochem 106:1378–1387

    Article  PubMed  CAS  Google Scholar 

  303. Miranda RC, Pietrzykowski AZ, Tang Y, Sathyan P, Mayfield D, Keshavarzian A, Sampson W, Hereld D (2010) Micro-RNAs: master regulators of ethanol abuse and toxicity? Alcohol Clin Exp Res 34:575–587

    Article  PubMed  CAS  Google Scholar 

  304. Pietrzykowski AZ, Friesen RM, Martin GE, Puig SI, Nowak CL, Wynne PM, Siegelmann HT, Treistman SN (2008) Posttranslational regulation of BK channel splice variant stability by miR-9 underlies neuroadaptation to alcohol. Neuron 59:274–287

    Article  PubMed  CAS  Google Scholar 

  305. Tang Y, Banan A, Forsyth CB, Fields JZ, Lau CK, Zhang LJ, Keshavarzian A (2008) Effect of alcohol on miR-212 expression in intestinal epithelial cells and its potential role in alcoholic liver disease. Alcohol Clin Exp Res 32:355–364

    Article  PubMed  CAS  Google Scholar 

  306. Sathyan P, Golden HB, Miranda RC (2007) Competing interactions between micro-RNAs determine neural progenitor survival and proliferation after ethanol exposure: evidence from an ex vivo model of the fetal cerebral cortical neuroepithelium. J Neurosci 27:8546–8557

    Article  PubMed  CAS  Google Scholar 

  307. Santillano DR, Kumar LS, Prock TL, Camarillo C, Tingling JD, Miranda RC (2005) Ethanol induces cell-cycle activity and reduces stem cell diversity to alter both regenerative capacity and differentiation potential of cerebral cortical neuroepithelial precursors. BMC Neurosci 6:59–75

    Article  PubMed  CAS  Google Scholar 

  308. Wang LL, Zhang Z, Li Q, Yang R, Pei X, Xu Y, Wang J, Zhou SF, Li Y (2009) Ethanol exposure induces differential microRNA and target gene expression and teratogenic effects which can be suppressed by folic acid supplementation. Hum Reprod 24:562–579

    Article  PubMed  CAS  Google Scholar 

  309. Van den Heuvel JP, Lucier G (1993) Environmental toxicology of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans. Environ Health Perspect 100:189–200

    Article  Google Scholar 

  310. Moffat ID, Boutros PC, Celius T, Lindén J, Pohjanvirta R, Okey AB (2007) MicroRNAs in adult rodent liver are refractory to dioxin treatment. Toxicol Sci 99:470–487

    Article  PubMed  CAS  Google Scholar 

  311. Elyakim E, Sitbon E, Faerman A, Tabak S, Montia E, Belanis L, Dov A, Marcusson EG, Bennett CF, Chajut A, Cohen D, Yerushalmi N (2010) has-miR-191 is a candidate oncogene target for hepatocellular carcinoma therapy. Cancer Res 70:8077–8087

    Article  PubMed  CAS  Google Scholar 

  312. Yauk CL, Jackson K, Malowany M, Williams A (2010) Lack of change in microRNA expression in adult mouse liver following treatment with benzo[a]pyrene despite robust mRNA transcriptional response. Mutat Res 722:131–139

    PubMed  Google Scholar 

  313. Shen YL, Jiang YG, Greenlee AR, Zhou LL, Liu LH (2009) MicroRNA expression profiles and miR-10a target in anti-benzo[a]pyrene-7,8-diol-9,10-epoxide-transformed human 16HBE cells. Biomed Environ Sci 22:14–21

    Article  PubMed  CAS  Google Scholar 

  314. Debernardi S, Skoulakis S, Molloy G, Chaplin T, Dixon-McIver A, Young BD (2007) MicroRNA miR-181a correlates with morphological sub-class of acute myeloid leukaemia and the expression of its target genes in global genome-wide analysis. Leukemia 21:912–916

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Luch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Basel AG

About this chapter

Cite this chapter

Smirnova, L., Sittka, A., Luch, A. (2012). On the Role of Low-Dose Effects and Epigenetics in Toxicology. In: Luch, A. (eds) Molecular, Clinical and Environmental Toxicology. Experientia Supplementum, vol 101. Springer, Basel. https://doi.org/10.1007/978-3-7643-8340-4_18

Download citation

Publish with us

Policies and ethics