Skip to main content

Part of the book series: Experientia Supplementum ((EXS,volume 100))

Abstract

Biological warfare agents are a group of pathogens and toxins of biological origin that can be potentially misused for military or criminal purposes. The present review attempts to summarize necessary knowledge about biological warfare agents. The historical aspects, examples of applications of these agents such as anthrax letters, biological weapons impact, a summary of biological warfare agents and epidemiology of infections are described. The last section tries to estimate future trends in research on biological warfare agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kortepeter MG, Cieslak TJ, Eitzen EM (2001) Bioterrorism. J Environ Health 63: 21–24

    CAS  PubMed  Google Scholar 

  2. Agarwal R, Shukla SK, Dharmani S, Gandhi A (2004) Biological warfare — An emerging threat. J Assoc Physicians India 52: 733–738

    PubMed  Google Scholar 

  3. Christopher GW, Cieslak TJ, Pavlin JA, Eitzen EM (1997) Biological warfare: A historical perspective. J Am Med Assoc 278: 412–417

    CAS  Google Scholar 

  4. Mayor A (1997) Dirty tricks in ancient warfare. Mil Hist Quart 10: 1–37

    Google Scholar 

  5. Derbes VJ (1966) De mussis and the Great Plaque of 1348: A forgotten episode in bacteriological war. J Am Med Assoc 196: 59–62

    CAS  Google Scholar 

  6. Poupard JA, Miller LA (1992) History of biological warfare: Catapults to capsomeres. Ann NY Acad Sci 666: 9–20

    CAS  PubMed  Google Scholar 

  7. Millett PD (2006) The biological and toxin weapons convention. Rev Sci Tech 25: 35–52

    CAS  PubMed  Google Scholar 

  8. Harris S (1992) Japanese biological warfare research on humans: A case study on microbiology and ethics. Ann NY Acad Sci 666: 21–52

    CAS  PubMed  Google Scholar 

  9. Klietmann WF, Ruoff KL (2001) Bioterrorism: Implications for the clinical microbiologist. Clin Microbiol Rev 14: 364–381

    CAS  PubMed  Google Scholar 

  10. Torok TJ, Tauxe RV, Wise RP, Livengood JR, Sokolow R, Mauvais S, Birkness KA, Skeels MR, Horan JM, Foster LR (1997) A large community outbreak of salmonellosis caused by international contamination of restaurant salad bars. J Am Med Assoc 278: 389–395

    CAS  Google Scholar 

  11. Olson KB (1999) Aum Shinrikyo: Once and future threat?. Emerg Infect Dis 5: 513–516

    CAS  PubMed  Google Scholar 

  12. Keim P, Kalif A, Schupp J, Hill K, Travis SE, Richmond K, Adair DM, Hugh-Jones, M, Kuske CR, Jackson P (1997) Molecular evolution and diversity in Bacillus anthracis as detected by amplified fragment length polymorphism markers. J Bacteriol 1979: 818–824

    Google Scholar 

  13. Walker DH, Yampolska O, Grinberg LM (1994) Death at Sverdlovsk: What have we learned?. Am J Pathol 1994: 1135–1141

    Google Scholar 

  14. Wilkening DA (2006) Sverdlovsk revisted: Modeling human inhalation anthrax. Proc Natl Acad Sci USA 2006: 7589–7594

    Google Scholar 

  15. Taylor LH, Latham SM, Woolhouse MEJ (2001) Risk factors for human disease emergence. Phil Trans R Soc Lond B 356: 983–989

    CAS  Google Scholar 

  16. NATO (1996) NATO Handbook on the Medical Aspects of NBC Defensive Operations. Part II — Biolgical, AMedP-6 (B), Department of the Army, Washington D.C.

    Google Scholar 

  17. Kaufmann AF, Meltzer MI, Schmid GP (1997) The economic impact of a bioterrorist attack: Are prevention and postattack intervention programs justifiable? Emerg Infect Dis 3: 83–94

    CAS  PubMed  Google Scholar 

  18. Bradburne C, Chung MC, Zong Q, Schlauch K, Liu D, Popova T, Popova A, Bailey C, Soppet D, Popov S (2008) Transcriptional and apoptotic responses of THP-1 cells to challenge with toxigenic, and non-toxigenic. Bacillus anthracis. BMC Immunol 13: 9–67

    Google Scholar 

  19. Nguyen ML, Crowe SR, Kurella S, Teryzan S, Cao B, Ballard JD, James JA, Farris AD (2009) Sequential B-cell epitopes of Bacillus anthracis lethal factor bind lethal toxin-neutralizing antibodies. Infect Immun 77: 162–169

    CAS  PubMed  Google Scholar 

  20. Griffin KF, Oyston PC, Titball RW (2007) Francisella tularensis vaccines. FEMS Immunol Med Microbiol 49: 315–323

    CAS  PubMed  Google Scholar 

  21. Isherwood KE, Titball RW, Davies DH, Felgner PL, Morrow WJ (2005) Vaccination strategies for Francisella tularensis. Adv Drug Deliv Rev 57: 1403–1414

    CAS  PubMed  Google Scholar 

  22. Turnbull PCB (1999) Definitive identification of Bacillus anthracis — A review. J Appl Microbiol 87: 237–240

    CAS  PubMed  Google Scholar 

  23. Baillie L, Read TD (2001) Bacillus anthracis, a bug with attitude! Curr Opin Microbiol 4: 78–81

    CAS  PubMed  Google Scholar 

  24. Titball RW, Turnbull PCB, Huston RA (1991) The monitoring and detection of Bacillus anthracis in the environment. J Appl Bacteriol Symp 70: 9–18

    Google Scholar 

  25. Riedel S (2005) Anthrax: A continuing concern in the era of bioterrorism. BUMC Proc 18: 234–243

    Google Scholar 

  26. Mc Sherry J, Kilpatrick R (1992) The plague of Athens. J R Soc Med 85: 713–713

    CAS  Google Scholar 

  27. Theodorides J (1993) The plague of Athens. J Roy Soc Med 86: 244–244

    Google Scholar 

  28. LaForce FM (1994) Anthrax. Clin Infect Dis 19: 1009–1014

    CAS  PubMed  Google Scholar 

  29. Patocka J, Splino M (2002) Anthrax toxin characterization. Acta Med 45: 3–5

    CAS  Google Scholar 

  30. Sirard JC, Guidi-Rontani C, Rouet A, Mock M (2000) Characterization of a plasmid region involved in Bacillus anthracis toxin production and pathogenesis. Int J Med Microbiol 290: 313–316

    CAS  PubMed  Google Scholar 

  31. Bhatnagar R, Batra S (2001) Anthrax toxin. Crit Rev Microbiol 27: 167–200

    CAS  PubMed  Google Scholar 

  32. Guildi-Rontani C, Weber-Levy M, Mock M, Cabiaux V (2000) Translocation of Bacillus anthracis lethal and oedema factors across endosome membranes. Cell Microbiol 2: 259–264

    Google Scholar 

  33. Duesbery NS, Vande Woude GF (1999) Anthrax lethal factor causes proteolytic inactivation of mitogen-activated protein kinase kinase. J Appl Microbil 87: 289–293

    CAS  Google Scholar 

  34. Zhao J, Milne JC, Collier RJ (1995) Effect of anthrax toxin’s lethal factor on ion channels formed by the protective antigen. J Biol Chem 270: 18626–18630

    CAS  PubMed  Google Scholar 

  35. Mujer CV, Wagner MA, Eschenbrenner M, Horn T, Kraycer JA, Redkar R, Hagius S, Elzer P, Delvecchio VG (2002) Global analysis of Brucella melitensis proteomes. Ann NY Acad Sci 969: 97–101

    CAS  PubMed  Google Scholar 

  36. Glynn MK, Lynn TV (2008) Brucellosis. J Am Vet Med Assoc 233: 900–908

    PubMed  Google Scholar 

  37. Franco MP, Mulder M, Gilman RH, Smits HL (2007) Human brucellosis. Lancet Infect Dis 7: 775–786

    CAS  PubMed  Google Scholar 

  38. Al-Tawfiq JA (2008) Therapeutic options for human brucellosis. Expert Rev Anti Infect Ther 6: 109–120

    CAS  PubMed  Google Scholar 

  39. Pappas G, Papadimitrou P, Christou L, Akritidis N (2006) Future trends in human brucellosis treatment. Exp Opin Investig Drugs 15: 1141–1149

    CAS  Google Scholar 

  40. Gupta VK, Rout PK, Vihan VS (2007) Induction of immune response in mice with a DNA vaccine encoding outer membrane protein (omp31) of Brucella melitensis 16 M. Res Vet Sci 82: 305–313

    CAS  PubMed  Google Scholar 

  41. McCoy GW, Chapin CW (1912) Further observations on a plague like disease of rodents with a plelimiary note on the causative agent. Bacterium tularense. J Infect Dis 10: 61–72

    Google Scholar 

  42. Jellison WL (1972) Tularemia: Dr. Edward Francis and his first 23 isolates of Francisella tularensis. Bull Hist Med 46: 477–485

    CAS  PubMed  Google Scholar 

  43. Nigeovic LE, Wingerter SL (2008) Tularemia. Infect Dis Clin North Am 22: 489–504

    Google Scholar 

  44. Gurycova D (1998) First isolation of Francisella tularensis subsp. tularensis in Europe. Eur J Epidemiol 14: 797–802

    CAS  PubMed  Google Scholar 

  45. Ellis J, Oyston PC, Green M, Titball RW (2002) Tularemia. Clin Microbiol Rev 15: 631–646

    PubMed  Google Scholar 

  46. Morner T (1992) The ecology of tularaemia. Rev Sci Tech 11: 1123–1130

    CAS  PubMed  Google Scholar 

  47. Pavlovich NV, Mishakin BN, Tynkevich NK, Ryzhko IV, Romanova LV, Danilevskaia GI (1991) Comparative characteristics of biological properties of Francisella tularensis strains isolated in the USSR. Antibiot Khimioter 35: 23–25

    Google Scholar 

  48. Broekhuijsen M, Larsson P, Johansson A, Bystrom M, Eriksson U, Larsson E, Prior RG, Sjostedt A, Titball RW (2003) Genome-wide DNA microarray analysis of Francisella tularensis strains demonstrates extensives genetic conservation within the species but identifies regions that are unique to the highly virulent F. tularensis subsp. tularensis. J. Clin Microbiol 41: 2924–2931

    CAS  Google Scholar 

  49. Pikula J, Treml F, Beklova M, Holesovska Z, Pikulova J (2003) Ecological conditions of natural foci of tularemia in the Czech Republic. Eur J Epid 18: 1091–1095

    Google Scholar 

  50. Pikula J, Beklova M, Holesovska Z, Treml F (2004) Prediction of possible distribution of tularemia in the Czech Republic. Vet Med-Czech 49: 61–64

    Google Scholar 

  51. Pikula J, Beklova M, Holesovska Z, Treml F (2004) Ecology of European brown hare and distribution of natural foci of tularaemia in the Czech Republic. Acta Vet Brno 73: 267–273

    Google Scholar 

  52. Hubalek Z, Sixl W, Halouzka J (1998) Francisella tularensis in Dermacentor reticulatus ticks from the Czech Republic and Austria. Wien Klin Wochenschr 110: 909–910

    CAS  PubMed  Google Scholar 

  53. Zhang F, Liu W, Chu MC, He J, Duan Q, Wu, X.M., Zhang PH, Zhao QM, Yang H, Xin ZT, Cao WC (2006) Francisella tularensis in rodents, China. Emerg Infect Dis 12: 994–996

    PubMed  Google Scholar 

  54. Siret V, Barataud D, Prat M, Vaillant V, Ansart S, LeCoustumier A, Vaissaire J, Raffi F, Garre M, Capek I (2006) An outbreal of airborne tularemia in France, August 2004. Euro Surveill 11: 58–60

    CAS  PubMed  Google Scholar 

  55. Pullen RL, Stuart BM (1945) Tularemia: Analysis of 225 cases. J Am Med Assoc 129: 495–500

    Google Scholar 

  56. Dennis DT, Iglesby TV, Henderson DA, Bartlett JG, Ascher MS, Eitzen E, Fine AD, Friedlander AM, Hauer J, Layton M, Lillibridge SR, McDale JE, Osterholm MT, O’Toole T, Parker G, Perl TM, Russell PK, Tonat K (2001) Tularemia as a biological wapon — Medical and public health magagement. J Am Med Assoc 285: 2763–2773

    CAS  Google Scholar 

  57. Pohanka M (2007) Evaluation of immunoglobulin production during tularaemia infection in BALB/c mouse model. Acta Vet Brno 76: 579–584

    CAS  Google Scholar 

  58. Enderlin G, Morales L, Jacobs RF, Cross TJ (1994) Streptomycin and alternative agents for the treatment of tularemia: Review of the literature. Clin Infect Dis 19: 42–47

    CAS  PubMed  Google Scholar 

  59. Eremeeva EM, Roux V, Raoult D (1993) Determination of genome size and restriction pattern polymorphism of Rickettsia prowazekii and Rickettsia typhi by pulsed field gel electrophoresis. FEMS Microbiol Lett 112: 105–112

    CAS  PubMed  Google Scholar 

  60. Weiss E, Coolbaugh JC, Williams JC (1975) Separation of viable Rickettsia typhi from yolk sac and L cell host components by Renografin density gradient centrifuation. Appl Microbiol 30: 456–463

    CAS  PubMed  Google Scholar 

  61. Dasch GA, Samms JR, Weiss E (1978) Biochemical characteristics of typhus group Rickettsiae with special attention to the Rickettsia prowazekii strains isolated from flying squirrels. Infect Immun 19: 676–685

    CAS  PubMed  Google Scholar 

  62. Andersson SGE, Zomorodipour A, Winkler HH, Kurland CG (1995) Unusual organization of the rRNA genes in Rickettsia prowazekii. J Bacteriol 177: 4171–4175

    CAS  PubMed  Google Scholar 

  63. Raoult D, Ndihokubwayo JB, Tisson-Dupont H, Roux V, Faugere B, Abegbinni R, Birtles RJ (1998) Outbreak of epidemic typhus associated with trench fever in Burundi. Lancet 352: 353–358

    CAS  PubMed  Google Scholar 

  64. Bechah Y, Capo C, Mege JL, Raoult D (2008) Epidemic typhus. Lancet Infect Dis 8: 417–426

    PubMed  Google Scholar 

  65. Lukin EP, Nesvizhskii IV (2003) Rickettsiosis: State of the art at the turn of the 21st century. Vestn Ross Akad Med Nauk 1: 30–35

    PubMed  Google Scholar 

  66. Grygorczuk S, Hermanowska-Szpakowicz T (2002) Yersinia pestis as a dangerous biological weapon. Med Pr 53: 343–348

    PubMed  Google Scholar 

  67. Shyamal B, Ravi Kumar R, Sohan L, Balakrishnan N, Veena M, Shiv L (2008) Present susceptibility status of rat flea Xenophsylla cheopis (Siphonaptera: Pulicidae), vector of plague against organochlorine, organophosphate and synthetic pyrethroids 1. The Nilgiris District, Tamil Nadu India. J Common Dis 40: 41–45

    Google Scholar 

  68. Eisen RJ, Wilder AP, Bearden SW, Nontenieri JA, Gage KL (2007) Early-phase transmission of Yersinia pestis by unblocked Xenopsylla cheopis (Siphonaptera: Pulicidae) is as efficient as transmission by blocked fleas. J Med Entomol 44: 678–682

    PubMed  Google Scholar 

  69. Eisen RJ, Borchert JN, Holmes JL, Amatre G, van Wyk K, Enscore RE, Babi N, Atiku LA, Wilder AP, Vetter SM, Bearden SW, Montenieri JA, Gage KL (2008) Early-phase transmission of Yersinia pestis by cat fleas (Ctenocephalides felis) and their potential role as vectors in a plague-endemic region of Uganda. Am J Trop Med Hyg 78: 949–956

    PubMed  Google Scholar 

  70. Achtman M, Zurth K, Morelli C, Torrea G, Guiyoule A, Carniel E (1999) Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc Natl Acad Sci USA 96: 14043–14048

    CAS  PubMed  Google Scholar 

  71. Guiyoule A, Grimont F, Iteman I, Grimont PAD, Lefevre M, Carniel E (1994) Plague pandemics investigated by ribotyping of Yersinia pestis strains. J Clin Microbiol 32: 634–641

    CAS  PubMed  Google Scholar 

  72. Russell JC (1968) That earlier plague. Demography 5: 174–184

    Google Scholar 

  73. Ligon BL (2006) Plague: A review of its history and potential as a biological weapon. Semin Pediatr Infect Dis 17: 161–170

    PubMed  Google Scholar 

  74. Reyn CF, Weber NS, Tempest B, Barnes AM, Poland JD, Boyce JM, Zalma V (1977) Epidemiologic and clinical features of an outbreak of bubonic plague in New Mexico. J Infect Dis 136: 489–494

    Google Scholar 

  75. Craven RB, Maupin GO, Beard ML, Quan TJ, Barnes AM (1993) Reported cases of human plague infections in the United States, 1970–1991. J Med Entomol 30: 758–761

    CAS  PubMed  Google Scholar 

  76. Crook LD, Tempest B (1992) Plague: A clinical review of 27 cases. Arch Intern Med 152: 1253–1256

    CAS  PubMed  Google Scholar 

  77. Slifka MK, Hanifin JM (2004) Smallpox: The basics. Dermatol Clin 22: 263–274

    PubMed  Google Scholar 

  78. Riedel S (2005) Small pox and biological warfare: A disease revisited. BUMC Proc 18: 13–20

    Google Scholar 

  79. Fenner F, Henderson DA, Arita I, Jezek Z, Ladnyi ID (1988) Small pox and its eradication. World Health Organization Memorandum 1460

    Google Scholar 

  80. World Health Organization (1975) Weekly Epidemiol Rec 38: 325–329

    Google Scholar 

  81. Nafziger SD (2005) Smallpox. Crit Care Clin 21: 739–746

    PubMed  Google Scholar 

  82. Koplan J, Monsur KA, Foster SO (1975) Treatment of variola major with adenine arabinoside. J Infect Dis 131: 34–39

    CAS  PubMed  Google Scholar 

  83. Monsur KA, Hossain MS, Huq F, Rahaman MM, Haque MQ (1975) Treatment of variola major with cytosine arabinoside. J Infect Dis 131: 40–43

    CAS  PubMed  Google Scholar 

  84. Borio L, Inglesby T, Peters CJ, Schmaljohn AL, Hughes JM, Jahrling PB, Ksiazek T, Johnson KM, Meyerhoff A, O’Toole T, Ascher MS, Barlett J, Breman JG, Eitzen EM, Hamburg M, Hauer J, Henderson DA, Johnson RT, Kwik G, Layton M, Lillibridge S, Nabel GJ, Osterholm MT, Perl TM, Russell P, Tonat K (2002) Hemorrhagic fever viruses as biological weapon. J Am Med Assoc 18: 2391–2405

    Google Scholar 

  85. LeDuc JW (1989) Epidemiology of hemorrhagic fever viruses. Rev Infect Dis 11: 730–735

    Google Scholar 

  86. Schou S, Hansen AK (2000) Marburg and Ebola virus infection in laboratory nonhuman primates: A literature review. Comp Med 50: 108–123

    CAS  PubMed  Google Scholar 

  87. Groseth A, Feldmann H, Strong JE (2007) The ecology of Ebola virus. Trends Microbiol 15: 408–416

    CAS  PubMed  Google Scholar 

  88. Peters CJ, Kuehne RW, Mercado RR, LeBow RH, Spertzel RO, Webb PA (1974) Hemorrhagic fever in Cochabamba, Bolivia, 1971. Am J Epidemiol 99: 425–433

    CAS  PubMed  Google Scholar 

  89. Slenczka WK (1999) The Marburg virus outbreak of 1967 and subsequent episodes. Curr Top Microbiol Immunol 235: 49–75

    CAS  PubMed  Google Scholar 

  90. Huggins JW (1989) Prospect for treatment of viral hemorrhagic fevers with ribavirin, a broadspectrum antiviral drug. Rev Infect Dis 11: 750–761

    Google Scholar 

  91. Maes P, Clement J, van Ranst M (2009) Recent approaches in hantavirus vaccine development. Expert Rev Vaccines 8: 67–76

    PubMed  Google Scholar 

  92. Hall JD, McCroskey LM, Pincomb BJ, Hetheway CL (1985) Isolation of an organism resembling Clostridium baratii which produces type F botulinal toxon from an infant with botulism. J Clin Microbiol 21: 654–655

    CAS  PubMed  Google Scholar 

  93. Aureli P, Fenicia L, Pasolini B, Gianfranceschi M, McCroskey LM, Hatheway CL (1986) Two cases of type E infant botulism caused by neurotoxigenic Clostridium butyricum in Italy. J Infect Dis 154: 207–211

    CAS  PubMed  Google Scholar 

  94. Gill MD (1982) Bacterial toxins: A table of lethal amounts. Microbiol Rev 46: 86–94

    CAS  PubMed  Google Scholar 

  95. Lacy DB, Tepp W, Cohen AC, DasGupta BR, Stevens RC (1998) Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nat Struct Biol 5: 898–902

    CAS  PubMed  Google Scholar 

  96. Bach-Rojecky L, Relja M, Filipovic B, Lackovic Z (2007) Botulinum toxin type A and cholinergic system. Lijec Vjesn 129: 407–414

    PubMed  Google Scholar 

  97. Fernandez PS, Peck MW (1999) A predictive model that describes the effect of prolonged heating at 70 to 90 degrees C and subsequent incubation at refrigeration temperatures on growth from spores and toxigenesis by nonproteolytic Clostridium botulinum in the presence of lysozyme. Appl Environ Microbiol 65: 3449–3457

    CAS  PubMed  Google Scholar 

  98. Koenig MG, Drutz DJ, Mushlin AI, Schaffner W, Rogers DE (1967) Type B botulism in man. Am J Med 42: 208–219

    CAS  PubMed  Google Scholar 

  99. Hughes JM, Blumenthal JR, Meson MH, Lombard GL, Dowell VR, Gangarosa EJ (1981) Clinical features of types A and B food-borne botulism. Ann Intern Med 95: 442–445

    CAS  PubMed  Google Scholar 

  100. Tacket CO, Shandera WX, Mann JM, Hargrett NT, Blake PA (1984) Equine antitoxin use and other factors that predict outcome in type A foodborne botulism. Am J Med 76: 794–798

    CAS  PubMed  Google Scholar 

  101. Siegel LS (1988) Human immune response to botulinum pentavalent (ABCDE) toxoid determined by a neutralization test and by an enzyme-linked immunosorbent assay. J Clin Microbiol 26: 2351–2356

    CAS  PubMed  Google Scholar 

  102. Zhan J, Zhou P (2003) A simplified method to evaluate the acute toxicity of ricin and ricinus agglutinin. Toxicology 186: 119–123

    CAS  PubMed  Google Scholar 

  103. Ippoliti R (2004) Structure and function of the plant toxin ricin, an N-glycosidase enzyme. Ital J Biochem 53: 92–97

    CAS  PubMed  Google Scholar 

  104. Lord MJ, Jolliffe NA, Marsden CJ, Pateman CS, Smith DC, Spooner RA, Watson PD, Roberts LM (2003) Ricin. Mechanisms of cytotoxicity. Toxicol Rev 22: 53–64

    CAS  PubMed  Google Scholar 

  105. Gonzalez TV, Farrant SA, Mantis NJ (2006) Ricin induces IL-8 secretion from human monocyte/macrophages by activating the p38 MAP kinase pathway. Mol Immunol 43: 1920–1923

    CAS  PubMed  Google Scholar 

  106. Rao PV, Jayaraj R, Bhaskar AS, Kumar O, Bhatacharya R, Saxena P, Dash PK, Vijayaraghavan R (2005) Mechanism of ricin-induced apoptosis in human cervical cancer cells. Biochem Pharmacol 69: 855–865

    CAS  PubMed  Google Scholar 

  107. Sun J, Pohl EE, Krylova OO, Krause E, Agapov II, Tonevitsky AG, Pohl P (2004) Membrane destabilization by ricin. Eur Biophys J 33: 572–579

    CAS  PubMed  Google Scholar 

  108. Canter DA, Gunning D, Rodgers P, O’Connor L, Traunero C, Kempter CJ (2005) Remediation of Bacillus anthracis contamination in the U.S. Department of Justice mail facility. Biosecur Bioterror 3: 119–127

    PubMed  Google Scholar 

  109. Josefson D (2001) US fear of bioterrorism spreads as anthrax cases incease. Br Med J 323: 877–878

    Google Scholar 

  110. Higgins JA, Cooper M, Schroeder-Trucker L, Black S, Miller D, Karns JS, Manthey E, Breeze R, Perdue ML (2002) A field investigation of Bacillus anthracis contamination of U.S. Department of Agriculture and other Washington, D.C., buildings during the anthrax attack of October 2001. Appl Environ Microbiol 69: 593–599

    Google Scholar 

  111. Read TD, Salzberg SL, Pop M, Shumway M, Umayam L, Jiang L, Holtzapple E, Busch JD, Smith KL, Schupp JM, Solomon D, Keim P, Fraser CM (2002) Comparative genome sequencing for discovery of novel polymorphisms in Bacillus anthracis. Science 296: 2028–2033

    CAS  Google Scholar 

  112. Duncan EJ, Kournikakis B, Ho J, Hill I (2009) Pulmonary depostion of aerosolized Bacillus atrophaeus in a Swine model due to exposure from a simulated anthrax letter incident. Inhal Toxicol 21: 141–152

    CAS  PubMed  Google Scholar 

  113. Duncan S, Ho J (2008) Estimation of viable spores in Bacillus atrophaeus (BG) particles of 1 to 9 μm size range. Clean Soil Air Water 36: 584–592

    CAS  Google Scholar 

  114. Gerndt H (2002) Anthrax stories — Theses on legend research in the globalized world. Österr Z Volkskd 105: 279–295

    Google Scholar 

  115. Benedek DM, Hollway HC, Becker SM (2002) Emergency mental health management in bioterrorism events. Emerg Med Clin North Am 20: 393–407

    PubMed  Google Scholar 

  116. Agar SL, Sha J, Foltz SM, Erova TE, Walberg KG, Parham TE, Baze WB, Suarez G, Peterson JW, Chopra AK (2008) Characterization of a mouse model of plague after aerosolization of Yersinia pestis CO92. Microbiology 154: 1939–1948

    CAS  PubMed  Google Scholar 

  117. Chen PS, Li CS (2007) Real-time monitoring for bioaerosols — Flow cytometry. Analyst 132: 14–16

    CAS  PubMed  Google Scholar 

  118. Ward M, Siegel JA, Corsi RL (2005) The effectiveness of stand alone air cleaners for shelter-inplace. Indoor Air 15: 127–134

    CAS  PubMed  Google Scholar 

  119. Eubanks LM, Dickerson TJ, Janda KD (2007) Technological advancements for the detection of and protection against biological and chemical warfare agents. Chem Soc Rev 36: 458–470

    CAS  PubMed  Google Scholar 

  120. Pohanka M, Hubalek M, Neubauerova V, Macela A, Faldyna M, Bandouchova H, Pikula J (2008) Current and emerging assays for Francisella tularensis detection: A review. Vet Med Czech 53: 585–594

    CAS  Google Scholar 

  121. Saikaly PE, Berlaz MA, de Los Reyes FL (2007) Development of quantitative real-time PCR assays for detection and quantification of surrogate biological warfare agents in building debris and lechate. Appl Environ Microbiol 73: 6557–6565

    CAS  PubMed  Google Scholar 

  122. Edwards KA, Clancy HA, Baeumner AJ (2006) Bacillus anthracis: Toxicology, epidemiology and current rapid-detection methods. Anal Bioanal Chem 384: 73–84

    CAS  PubMed  Google Scholar 

  123. Pohanka M, Skladal P, Kroca M (2007) Biosensors for biological warfare agent detection. Def Sci J 57: 185–193

    Google Scholar 

  124. Pohanka M, Skladal P (2005) Piezoelectric immunosensor for Francisella tularensis detection using immunoglobulin M in a limiting dilution. Anal Lett 76: 607–612

    Google Scholar 

  125. Pohanka M, Skladal P (2007) Piezoelectric immunosensor for the direct and rapid detection of Franciella tularensis. Folia Microbiol 52: 325–330

    CAS  Google Scholar 

  126. Pohanka M, Pavlis O, Skladal P (2007) Diagnosis of tularemia using piezoelectric biosensor technology. Talanta 71: 981–985

    CAS  PubMed  Google Scholar 

  127. Pohanka M, Treml F, Hubalek M, Bandouchova H, Beklova M, Pikula J (2007) Piezoelectric biosensor biosensor for a simple serological diagnosis of tularemia in infected European brown hares (Lepus europaeus). Sensors 7: 2825–2834

    Google Scholar 

  128. Pohanka M, Skladal P (2007) Serological diagnosis of tularemia in mice using the amperometric immunosensor. Electroanalysis 19: 2507–2512

    CAS  Google Scholar 

  129. Wayne Conlan J, Oyston PC (2007) Vaccines against Francisella tularensis. Ann NY Acad Sci 1105: 325–350

    CAS  PubMed  Google Scholar 

  130. Drusano GL, Okusanva OO, Okusanva A, van Scov B, Brown DL, Kulawy R, Sorgel F, Heine HS, Louie A (2005) Is 60 days of ciprofloxacin administration necessary for postexposure prophylaxis for Bacillus anthracis? Antimicrob Agents Chemother 52: 3973–3979

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Birkhäuser Verlag/Switzerland

About this chapter

Cite this chapter

Pohanka, M., Kuča, K. (2010). Biological warfare agents. In: Luch, A. (eds) Molecular, Clinical and Environmental Toxicology. Experientia Supplementum, vol 100. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8338-1_17

Download citation

Publish with us

Policies and ethics