Skip to main content

Complementary microarray technologies

  • Chapter
Microarrays in Inflammation

Part of the book series: Progress in Inflammation Research ((PIR))

Abstract

As outlined in the previous chapters of this book, the main microarray applications in inflammation rely on mRNA expression profiling based on either Oligo or cDNA microarray platforms. By virtue of measuring mRNA transcript levels, the activity of genes in inflammatory lesions can be analyzed. However, we have not focused solely on mRNA expression via microarray analysis over the last decade. Different disciplines from the genomics, glycomics, proteomics and metabolomics area have been combined in order to get an “all-inclusive” picture of the disease to be analysed. This combined approach has led to the creation of a new discipline named “systems biology”. Novel microarray-based technologies have been developed that enable the analysis of “messenger” molecules other than mRNA. The focus of the current chapter is on those microarray platforms which either already play or are expected to play an important role in our understanding of the pathogenesis of inflammation. In addition, all described microarray platforms are meant to speed up drug discovery in future research and/or serve as prognostic or diagnostic tools in inflammatory diseases. This overview will concentrate on microarray platforms developed for promoter or CpG methylation as well as Chromatin Immunoprecipitation on chip analysis (ChIP on Chip), array comparative genomic hybridization (aCGH), carbohydrate microarrays, protein microarrays and microarrays for the detection and analysis of microRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baylin, S.B., J.E. Ohm, Epigenetic gene silencing in cancer — a mechanism for early oncogenic pathway addiction? Nature reviews. Cancer, 2006. 6(2): 107–16

    PubMed  CAS  Google Scholar 

  2. Rauch, T et al., MIRA-assisted microarray analysis, a new technology for the determination of DNA methylation patterns, identifies frequent methylation of homeodomaincontaining genes in lung cancer cells. Cancer Res, 2006. 66(16): 7939–47

    Article  PubMed  CAS  Google Scholar 

  3. Boyer, L.A. et al., Core transcriptional regulatory circuitry in human embryonic stem cells. Cell, 2005. 122(6): 947–56

    Article  PubMed  CAS  Google Scholar 

  4. Barrett, M.T. et al., Comparative genomic hybridization using oligonucleotide microarrays and total genomic DNA. Proc Nat Acad Sci USA, 2004. 101(51): 17765–70. Epub 2004 Dec 10

    Article  PubMed  CAS  Google Scholar 

  5. Gall, J.G., M.L. Pardue, Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proc Nat Acad Sci USA, 1969. 63(2): 378–83

    Article  PubMed  CAS  Google Scholar 

  6. Pardue, M.L.,J.G. Gall, Molecular hybridization of radioactive DNA to the DNA of cytological preparations. Proc Nat Acad Sci USA, 1969. 64(2): 600–4

    Article  PubMed  Google Scholar 

  7. Kallioniemi, A. et al., Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science (New York, N.Y.), 1992. 258(5083): 818–21

    Article  PubMed  CAS  Google Scholar 

  8. Pinkel, D. et al.,High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nature Genetics, 1998. 20(2): 207–11

    Article  PubMed  CAS  Google Scholar 

  9. Greshock, J. et al., 1-Mb resolution array-based comparative genomic hybridization using a BAC clone set optimized for cancer gene analysis. Genome Research, 2004. 14(1): 179–87. Epub 2003 Dec 12

    Article  PubMed  CAS  Google Scholar 

  10. Drickamer, K., M.E. Taylor, Glycan arrays for functional glycomics. Genome Biology, 2002. 3(12): REVIEWS1034. Epub 2002 Nov 27

    Google Scholar 

  11. Kulig, P., J. Cichy, Acute phase mediator oncostatin M regulates affinity of alpha1-protease inhibitor for concanavalin A in hepatoma-derived but not lung-derived epithelial cells. Cytokine, 2005. 30(5): 269–74. Epub 2005 Mar 25

    Article  PubMed  CAS  Google Scholar 

  12. Renkonen, J. et al., Glycosylation might provide endothelial zip codes for organ-specific leukocyte traffic into inflammatory sites. Am J Pathol, 2002. 161(2): 543–50

    PubMed  CAS  Google Scholar 

  13. Rosen, S.D, Endothelial ligands for L-selectin: from lymphocyte recirculation to allograft rejection. Am J Pathol, 1999. 155(4): 1013–20

    PubMed  CAS  Google Scholar 

  14. Dube, D.H., C.R. Bertozzi, Glycans in cancer and inflammation — potential for therapeutics and diagnostics. Nature reviews. Drug Discovery, 2005. 4(6): 477–88

    Article  PubMed  CAS  Google Scholar 

  15. Wang, D. et al., Carbohydrate microarrays for the recognition of cross-reactive molecular markers of microbes and host cells. Nature Biotechnology, 2002. 20(3): 275–81

    Article  PubMed  CAS  Google Scholar 

  16. Blixt, O. et al., Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. Proc Nat Acad Sci USA, 2004. 101(49): 17033–8. Epub 2004 Nov 24

    Article  PubMed  CAS  Google Scholar 

  17. Khan, I, D.V. Desai, A. Kumar, Carbochips: a new energy for old biobuilders. J Biosci-Bioeng, 2004. 98(5): 331–7

    PubMed  CAS  Google Scholar 

  18. Miyamoto, S., Clinical applications of glycomic approaches for the detection of cancer and other diseases. Curr Op Mol Ther, 2006. 8(6): 507–13

    CAS  Google Scholar 

  19. Horlacher, T., P.H. Seeberger, The utility of carbohydrate microarrays in glycomics. Omics: a Journal of Integrative Biology, 2006. 10(4): 490–8

    Article  CAS  Google Scholar 

  20. Hall, D.A. et al.,Regulation of gene expression by a metabolic enzyme. Science (New York, N.Y.), 2004. 306(5695): 482–4

    CAS  Google Scholar 

  21. Zhu, H., M. Snyder, Protein arrays and microarrays. Curr Op Chem Biol, 2001. 5(1): 40–5

    Article  CAS  Google Scholar 

  22. Ptacek, J. et al., Global analysis of protein phosphorylation in yeast. Nature, 2005. 438(7068): 679–84

    Article  PubMed  CAS  Google Scholar 

  23. Sreekumar, A. et al., Profiling of cancer cells using protein microarrays: discovery of novel radiation-regulated proteins. Cancer Res, 2001. 61(20): 7585–93

    PubMed  CAS  Google Scholar 

  24. Hall, D.A, J. Ptacek, M. Snyder, Protein microarray technology. Mechanisms of Ageing and Development, 2007. 128(1): 161–7. Epub 2006 Nov 28

    Article  PubMed  CAS  Google Scholar 

  25. Zhu, H., M. Snyder, Protein chip technology. Curr Op Chem Biol, 2003. 7(1): 55–63

    Article  CAS  Google Scholar 

  26. Speer, R. et al., Reverse-phase protein microarrays for tissue-based analysis. Curr Op Mol Ther, 2005. 7(3): 240–5

    CAS  Google Scholar 

  27. Ramachandran, N. et al., Self-assembling protein microarrays. Science (New York, N.Y.), 2004. 305(5680): 86–90

    CAS  Google Scholar 

  28. Ramachandran, N. et al., On-chip protein synthesis for making microarrays. Methods Mol Biol (Clifton, N.J.), 2006. 328: 1–14

    PubMed  CAS  Google Scholar 

  29. Kusnezow, W., J.D. Hoheisel, Solid supports for microarray immunoassays. Journal of Molecular Recognition: JMR, 2003. 16(4): 165–76

    Article  PubMed  CAS  Google Scholar 

  30. Ramachandran, N. et al., Emerging tools for real-time label-free detection of interactions on functional protein microarrays. FEBS, 2005. 272(21): 5412–25

    Article  CAS  Google Scholar 

  31. Pinto-Plata, V. et al., Profiling serum biomarkers in patients with COPD: associations with clinical parameters. Thorax, 2007. 62(7): 595–601. Epub 2007 Mar 13

    Article  PubMed  Google Scholar 

  32. Tabibiazar, R. et al., Proteomic profiles of serum inflammatory markers accurately predict atherosclerosis in mice. Physiological Genomics, 2006. 25(2): 194–202. Epub 2006 Jan 17

    Article  PubMed  CAS  Google Scholar 

  33. Landgraf, P. et al., A mammalian microRNA expression atlas based on small RNA library sequencing. Cell, 2007. 129(7): 1401–14

    Article  PubMed  CAS  Google Scholar 

  34. Liu, C.G. et al., Expression profiling of microRNA using oligo DNA arrays. Methods (San Diego, Calif.), 2008. 44(1): 22–30

    CAS  Google Scholar 

  35. Castoldi, M. et al., miChip: an array-based method for microRNA expression profiling using locked nucleic acid capture probes. Nature Protocols, 2008. 3(2): 321–9

    Article  PubMed  CAS  Google Scholar 

  36. Wienholds, E.et al., MicroRNA expression in zebrafish embryonic development. Science (New York, N.Y.), 2005. 309(5732): 310–1. Epub 2005 May 26

    CAS  Google Scholar 

  37. Dai, Y. et al., Microarray analysis of microRNA expression in peripheral blood cells of systemic lupus erythematosus patients. Lupus, 2007. 16(12): 939–46

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Gerstmayer, B. (2008). Complementary microarray technologies. In: Bosio, A., Gerstmayer, B. (eds) Microarrays in Inflammation. Progress in Inflammation Research. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8334-3_17

Download citation

Publish with us

Policies and ethics