Skip to main content

Gene expression patterns in asthma

  • Chapter
Microarrays in Inflammation

Part of the book series: Progress in Inflammation Research ((PIR))

  • 499 Accesses

Abstract

Bronchial asthma is a complicated and diverse disorder affected by genetic and environmental factors, with Th2-type inflammation dominant in its pathogenesis. However, the underlying molecular mechanism of bronchial asthma is still poorly understood. Microarray technology, now one of the most powerful tools for functional genomics, has been used in several trials to dissect the pathogenesis of bronchial asthma, providing some novel pathogenic mechanisms as well as information about gene-expression profiling. This article describes the recent outcomes of microarray analyses applied to bronchial tissues of asthma patients or asthma animal models and cultured cells related to the biological events in bronchial asthma. This information could be relevant for finding drug targets or biomarkers for bronchial asthma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Masoli M, Fabian D, Holt S, Beasley R (2004) The global burden of asthma: executive summary of the GINA Dissemination Committee report. Allergy 59: 469–478

    Article  PubMed  Google Scholar 

  2. Holgate ST (1999) The epidemic of allergy and asthma. Nature 402: B2–4

    Article  PubMed  CAS  Google Scholar 

  3. Wills-Karp M (2001) IL-12/IL-13 axis in allergic asthma. J Allergy Clin Immunol 107: 9–18

    Article  PubMed  CAS  Google Scholar 

  4. Izuhara K, Arima K, Yasunaga S (2002) IL-4 and IL-13: their pathological roles in allergic diseases and their potential in developing new therapies. Curr Drug Targets Inflamm Allergy 1: 263–269

    Article  PubMed  CAS  Google Scholar 

  5. Laprise C, Sladek R, Ponton A, Bernier MC, Hudson TJ, Laviolette M (2004) Functional classes of bronchial mucosa genes that are differentially expressed in asthma. BMC Genomics 5: 21

    Article  PubMed  Google Scholar 

  6. Lilly CM, Tateno H, Oguma T, Israel E, Sonna LA (2005) Effects of allergen challenge on airway epithelial cell gene expression. Am J Respir Crit Care Med 171: 579–586

    Article  PubMed  Google Scholar 

  7. Guajardo JR, Schleifer KW, Daines MO, Ruddy RM, Aronow BJ, Wills-Karp M, Hershey GK (2005) Altered gene expression profiles in nasal respiratory epithelium reflect stable versus acute childhood asthma. J Allergy Clin Immunol 115: 243–251

    Article  PubMed  CAS  Google Scholar 

  8. Zimmermann N, King NE, Laporte J, Yang M, Mishra A, Pope SM, Muntel EE, Witte DP, Pegg AA, Foster PS et al (2003) Dissection of experimental asthma with DNA microarray analysis identifies arginase in asthma pathogenesis. J Clin Invest 111: 1863–1874

    PubMed  CAS  Google Scholar 

  9. Karp CL, Grupe A, Schadt E, Ewart SL, Keane-Moore M, Cuomo PJ, Kohl J, Wahl L, Kuperman D, Germer S et al (2000) Identification of complement factor 5 as a susceptibility locus for experimental allergic asthma. Nat Immunol 1: 221–226

    Article  PubMed  CAS  Google Scholar 

  10. Munitz A, Bachelet I, Finkelman FD, Rothenberg ME, Levi-Schaffer F (2007) CD48 is critically involved in allergic eosinophilic airway inflammation. Am J Respir Crit Care Med 175: 911–918

    Article  PubMed  CAS  Google Scholar 

  11. Kuperman DA, Lewis CC, Woodruff PG, Rodriguez MW, Yang YH, Dolganov GM, Fahy JV, Erle DJ (2005) Dissecting asthma using focused transgenic modeling and functional genomics. J Allergy Clin Immunol 116: 305–311

    Article  PubMed  CAS  Google Scholar 

  12. Zou J, Young S, Zhu F, Gheyas F, Skeans S, Wan Y, Wang L, Ding W, Billah M, McClanahan T et al (2002) Microarray profile of differentially expressed genes in a monkey model of allergic asthma. Genome Biol 3: research0020

    Google Scholar 

  13. Zimmermann N, Rothenberg ME (2006) The arginine-arginase balance in asthma and lung inflammation. Eur J Pharmacol 533: 253–262

    Article  PubMed  CAS  Google Scholar 

  14. Lee JH, Kaminski N, Dolganov G, Grunig G, Koth L, Solomon C, Erle DJ, Sheppard D (2001) Interleukin-13 induces dramatically different transcriptional programs in three human airway cell types. Am J Respir Cell Mol Biol 25: 474–485

    PubMed  CAS  Google Scholar 

  15. Chu EK, Cheng J, Foley JS, Mecham BH, Owen CA, Haley KJ, Mariani TJ, Kohane IS, Tschumperlin DJ, Drazen JM (2006) Induction of the plasminogen activator system by mechanical stimulation of human bronchial epithelial cells. Am J Respir Cell Mol Biol 35: 628–638

    Article  PubMed  CAS  Google Scholar 

  16. Yuyama N, Davies DE, Akaiwa M, Matsui K, Hamasaki Y, Suminami Y, Yoshida NL, Maeda M, Pandit A, Lordan JL et al (2002) Analysis of novel disease-related genes in bronchial asthma. Cytokine 19: 287–296

    Article  PubMed  CAS  Google Scholar 

  17. Cho SH, Tam SW, Demissie-Sanders S, Filler SA, Oh CK (2000) Production of plasminogen activator inhibitor-1 by human mast cells and its possible role in asthma. J Immunol 165: 3154–3161

    PubMed  CAS  Google Scholar 

  18. Corry DB (1999) IL-13 in allergy: home at last. Curr Opin Immunol 11: 610–614

    Article  PubMed  CAS  Google Scholar 

  19. Wills-Karp M, Chiaramonte M (2003) Interleukin-13 in asthma. Curr Opin Pulm Med 9: 21–27

    Article  PubMed  CAS  Google Scholar 

  20. Izuhara K, Arima K, Kanaji S, Ohta S, Kanaji T (2006) IL-13: a promising therapeutic target for bronchial asthma. Curr Med Chem 13: 2291–2298

    Article  PubMed  CAS  Google Scholar 

  21. Takayama G, Arima K, Kanaji T, Toda S, Tanaka H, Shoji S, McKenzie AN, Nagai H, Hotokebuchi T, Izuhara K (2006) Periostin: a novel component of subepithelial fibrosis of bronchial asthma downstream of IL-4 and IL-13 signals. J Allergy Clin Immunol 118: 98–104

    Article  PubMed  CAS  Google Scholar 

  22. Silverman GA, Bird PI, Carrell RW, Church FC, Coughlin PB, Gettins PG, Irving JA, Lomas DA, Luke CJ, Moyer RW et al (2001) The serpins are an expanding superfamily of structurally similar but functionally diverse proteins. Evolution, mechanism of inhibition, novel functions, and a revised nomenclature. J Biol Chem 276: 33293–33296

    Article  PubMed  CAS  Google Scholar 

  23. Kanaji S, Tanaka Y, Sakata Y, Takeshita K, Arima K, Ohta S, Hansell EJ, Caffrey C,Mottram JC, Lowther J et al (2007) Squamous cell carcinoma antigen 1 is an inhibitor of parasite-derived cysteine proteases. FEBS Lett 581: 4260–4264

    Article  PubMed  CAS  Google Scholar 

  24. Sakata Y, Arima K, Takai T, Sakurai W, Masumoto K, Yuyama N, Suminami Y, Kishi F, Yamashita T, Kato T et al (2004) The squamous cell carcinoma antigen 2 inhibits the cysteine proteinase activity of a major mite allergen, Der p1. J Biol Chem 279: 5081–5087

    Article  PubMed  CAS  Google Scholar 

  25. Kawakami K, Taguchi J, Murata T, Puri RK (2001) The interleukin-13 receptor α2 chain: an essential component for binding and internalization but not for interleukin13-induced signal transduction through the STAT6 pathway. Blood 97: 2673–2679

    Article  PubMed  CAS  Google Scholar 

  26. Chiaramonte mg, Mentink-Kane M, Jacobson BA, Cheever AW, Whitters MJ, Goad ME, Wong A, Collins M, Donaldson DD, Grusby MJ et al (2003) Regulation and function of the interleukin 13 receptor α2 during a T helper cell type 2-dominant immune response. J Exp Med 197: 687–701

    Article  PubMed  CAS  Google Scholar 

  27. Yasunaga S, Yuyama N, Arima K, Tanaka H, Toda S, Maeda M, Matsui K, Goda C, Yang Q, Sugita Y et al (2003) The negative-feedback regulation of the IL-13 signal by the IL-13 receptor α2 chain in bronchial epithelial cells. Cytokine 24: 293–303

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Izuhara, K., Kanaji, S., Ohta, S., Shiraishi, H., Arima, K., Yuyama, N. (2008). Gene expression patterns in asthma. In: Bosio, A., Gerstmayer, B. (eds) Microarrays in Inflammation. Progress in Inflammation Research. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8334-3_10

Download citation

Publish with us

Policies and ethics