Skip to main content

Immunobiology of IL-6 — Tocilizumab (humanised anti-IL-6 receptor antibody) for the treatment of rheumatoid arthritis

  • Chapter
New Therapeutic Targets in Rheumatoid Arthritis

Part of the book series: Progress in Inflammation Research ((PIR))

  • 823 Accesses

Abstract

The cloning of IL-6 cDNA in 1986 revealed that IL-6 is a multifunctional cytokine that plays important roles in the immunopathogenesis of rheumatoid arthritis (RA). A close relationship was observed between IL-6 levels in the synovial compartment and disease activity in RA patients, and overproduction of IL-6 could readily explain the abnormal laboratory findings and clinical symptoms seen in these patients. IL-6 therefore appeared to be a worthwhile and attractive therapeutic target for RA. In practice, blockage of IL-6 signalling by a humanised anti-IL-6 receptor antibody [tocilizumab (TCZ); also known as MRA] has been found to be very effective in the treatment of patients with RA. In recent Japanese Phase III clinical studies in RA patients, TCZ clearly prevented radiographic progression of joint destruction and greatly improved signs and symptoms. Very interestingly and importantly, this therapy has also proved quite effective at improving fever, fatigue and anaemia. No serious adverse events have been reported. At present, several international clinical studies of TCZ are ongoing in more than 4000 patients with active RA in 41 countries. The results are continuing to confirm the efficacy and safety of TCZ in the treatment of patients with RA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 289.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kishimoto T (1989) The biology of interleukin-6. Blood 74: 1–10

    PubMed  CAS  Google Scholar 

  2. Kishimoto T (2005) Interleukin-6: From basic science to medicine-40 years in immunology. Annu Rev Immunol 23: 1–21

    Article  PubMed  CAS  Google Scholar 

  3. Gershwin ME, Ohsugi Y (eds) (2005) The immunobiology of IL-6. Clin Rev Allergy Immunol 28: 177–269

    Google Scholar 

  4. Nishimoto N, Kishimoto T (2006) Interleukin 6: from bench to bedside. Nat Clin Pract Rheumatol 2: 619–626

    Article  PubMed  CAS  Google Scholar 

  5. Gauldie J, Richards C, Harnish D et al (1987) Interferon β/B-cell stimulatory factor type 2 shares identity with monocyte-derived hepatocyte-stimulating factor and regulates the major acute phase protein response in liver cells. Proc Natl Acad Sci USA 84: 7251–55

    Article  PubMed  CAS  Google Scholar 

  6. Andus T, Geiger T, Hirano T et al (1987) Recombinant human B cell stimulatory factor 2 (BSF-2/IFN-β2) regulates β-fibrinogen and albumin mRNA levels in Fao-9 cells. FEBS Lett 221: 18–22

    Article  PubMed  CAS  Google Scholar 

  7. Kopf M, Baumann H, Freer G et al (1994) Impaired immune and acute-phase responses in interleukin-6-deficient mice. Nature 368: 339–4

    Article  PubMed  CAS  Google Scholar 

  8. Imazeki I, Saito H, Hasegawa M et al (1998) IL-6 functions in cynomolgus monkeys blocked by a humanized antibody to human IL-6 receptor. Int J Immunopharmacol 20: 345–357

    Article  PubMed  CAS  Google Scholar 

  9. Hirano T, Yasukawa K, Harada H et al (1986) Complementary DNA for a novel human interleukin (BSF-2) that induces B lymphocytes to produce immunoglobulin. Nature 324: 73–76

    Article  PubMed  CAS  Google Scholar 

  10. Yamasaki K, Taga T, Hirata Y et al (1988) Cloning and expression of the human interleukin-6 (BSF-2/IFN beta 2) receptor. Science 241: 825–828

    Article  PubMed  CAS  Google Scholar 

  11. Taga T, Hibi M, Hirata Y et al (1989) Interleukin-6 triggers the association of its receptor with a possible signal transducer, gp130. Cell 58: 573–581

    Article  PubMed  CAS  Google Scholar 

  12. Hibi M, Murakami M, Saito M et al (1990) Molecular cloning and expression of an IL-6 signal transducer, gp130. Cell 63: 1149–57

    Article  PubMed  CAS  Google Scholar 

  13. Murakami M, Narazaki M, Hibi M et al (1991) Critical cytoplasmic region of the interleukin 6 signal transducer gp130 is conserved in the cytokine receptor family. Proc Natl Acad Sci USA 88: 11349–53

    Article  PubMed  CAS  Google Scholar 

  14. Murakami M, Hibi M, Nakagawa N et al (1993) IL-6-induced homodimerization of gp130 and associated activation of a tyrosine kinase. Science 260: 1808–10

    Article  PubMed  CAS  Google Scholar 

  15. Varghese JN, Moritz RL, Lou MZ et al (2002) Structure of the extracellular domains of the human interleukin-6 receptor 0#x03B1-chain. Proc Natl Acad Sci USA 99: 15959–64

    Article  PubMed  CAS  Google Scholar 

  16. Skiniotis G, Boulanger MJ, Garcia KC, Walz T (2005) Signaling conformations of the tall cytokine receptor gp130 when in complex with IL-6 and IL-6 receptor. Nat Struct Mol Biol 12: 545–51

    Article  PubMed  CAS  Google Scholar 

  17. Ip NY, Nye SH, Boulton TG et al (1992) CNTF and LIF act on neuronal cells via shared signalling pathways that involve the IL-6 signal transducing receptor component gp130. Cell 69: 1121–32

    Article  PubMed  CAS  Google Scholar 

  18. Gearing DP, Comeau MR, Friend DJ et al (1992) The IL-6 signal transducer, gp130: An oncostatin M receptor and affinity converter for the LIF receptor. Science 255: 1434–37

    Article  PubMed  CAS  Google Scholar 

  19. Liu J, Modrell B, Aruffo A et al (1992) Interleukin-6 signal transducer gp130 mediates oncostatin M signaling. J Biol Chem 267: 16763–66

    PubMed  CAS  Google Scholar 

  20. Yin T, Taga T, Tsang ML et al (1993) Involvement of IL-6 signal transducer gp130 in IL-11-mediated signal transduction. J Immunol 151: 2555–61

    PubMed  CAS  Google Scholar 

  21. Hirano T, Taga T, Nakano N et al (1985) Purification to homogeneity and characterization of human B-cell differentiation factor (BCDF or BSFp-2). Proc Natl Acad Sci USA 82: 5490–94

    Article  PubMed  CAS  Google Scholar 

  22. Jourdan M, Bataille R, Seguin J et al (1990) Constitutive production of interleukin-6 and immunologic features in cardiac myxomas. Arthritis Rheum 33: 398–402

    Article  PubMed  CAS  Google Scholar 

  23. Yoshizaki K, Matsuda T, Nishimoto N et al (1989) Pathogenic significance of interleukin-6 (IL-6/BSF-2) in Castleman’s disease. Blood 74: 1360–67

    PubMed  CAS  Google Scholar 

  24. Hirano T, Matsuda T, Turner M et al (1988) Excessive production of interleukin 6/B cell stimulatory factor-2 in rheumatoid arthritis. Eur J Immunol 18: 1797–801

    Article  PubMed  CAS  Google Scholar 

  25. Tak PP, Smeets TJ, Daha MR et al (1997) Analysis of the synovial cell infiltrate in early rheumatoid synovial tissue in relation to local disease activity. Arthritis Rheum 40: 217–25

    Article  PubMed  CAS  Google Scholar 

  26. Sato K, Tsuchiya M, Saldanha J et al (1993) Reshaping a human antibody to inhibit the interleukin-6-dependent tumor cell growth. Cancer Res 53: 851–6

    PubMed  CAS  Google Scholar 

  27. Nishimoto N, Sasai M, Shima Y et al (2000) Improvement in Castleman’s disease by humanized anti-interleukin-6 receptor antibody therapy. Blood 95: 56–61

    PubMed  CAS  Google Scholar 

  28. Nishimoto N, Kanakura Y, Aozasa K et al (2005) Humanized anti-interleukin-6 receptor antibody treatment of multicentric Castleman’s disease. Blood 106: 2627–32

    Article  PubMed  CAS  Google Scholar 

  29. Ohshima S, Saeki Y, Mima T et al (1998) Interleukin 6 plays a key role in the development of antigen-induced arthritis. Proc Natl Acad Sci USA 95: 8222–26

    Article  PubMed  CAS  Google Scholar 

  30. Sakaguchi N, Takahashi T, Hata H et al (2003) Altered thymic T-cell selection due to a mutation of the ZAP-70 gene causes autoimmune arthritis in mice. Nature 426: 454–60

    Article  PubMed  CAS  Google Scholar 

  31. Hata T, Sakaguchi N, Yoshitomi H et al (2004) Distinct contribution of IL-6, TNF-0#x03B1;, IL-1, and IL-10 to T cell-mediated spontaneous autoimmune arthritis in mice. J Clin Invest 114: 582–88

    PubMed  CAS  Google Scholar 

  32. Nishimoto N, Yoshizaki K, Maeda K et al (2003) Toxicity, pharmacokinetics, and dose finding study of repetitive treatment with humanized anti-interleukin 6 receptor antibody, MRA, in rheumatoid arthritis — Phase I/II clinical study. J Rheumatol 30: 1426–35

    PubMed  CAS  Google Scholar 

  33. Choy EH, Isenberg DA, Garrood T et al (2002) Therapeutic benefit after blocking interleukin-6 activity in rheumatoid arthritis with an anti-interleukin-6 receptor monoclonal antibody. Arthritis Rheum 46: 3143–50

    Article  PubMed  CAS  Google Scholar 

  34. Nishimoto N, Yoshizaki K, Miyasaka N et al (2004) Treatment of rheumatoid arthritis with humanized anti-interleukin-6 receptor antibody: a multicenter, double-blind, placebo-controlled trial. Arthritis Rheum 50: 1761–69

    Article  PubMed  CAS  Google Scholar 

  35. Maini RN, Taylor PC, Szechinski J et al (2006) Double-blind randomized controlled clinical trial of the interleukin-6 receptor antagonist, tocilizumab, in European patients with rheumatoid arthritis who had an incomplete response to methotrexate. Arthritis Rheum 54: 2817–29

    Article  PubMed  CAS  Google Scholar 

  36. Ogawa J, Harigai M, Akashi T et al (2006) Exacerbation of chronic active Epstein-Barr virus infection in a patient with rheumatoid arthritis receiving humanised anti-interleukin-6 receptor monoclonal antibody. Ann Rheum Dis 65: 1667–9

    Article  PubMed  CAS  Google Scholar 

  37. Nishimoto N, Hashimoto J, Miyasaka N et al (2007) Study of active controlled monotherapy used for rheumatoid arthritis, an IL-6 inhibitor (SAMURAI): Evidence of clinical and radiographic benefit from an X-ray reader-blinded randomized, controlled trial of tocilizumab. Ann Rheum Dis 66: 1162–7

    Article  PubMed  CAS  Google Scholar 

  38. Smolen JS, Beaulieu A, Rubbert-Roth A et al (2008) Effect of interleukin-6 inhibition with tocilizumab in patients with rheumatoid arthritis (OPTION study) A double-blind, placebo-controlled, randamized trial. Lancet 371: 987–97

    Article  PubMed  CAS  Google Scholar 

  39. Nemeth E, Valore EV, Territo M et al (2003) Hepcidin, a putative mediator of anemia of inflammation, is a type II acute-phase protein. Blood 101: 2461–3

    Article  PubMed  CAS  Google Scholar 

  40. Nemeth E, Rivera S, Gabayan V et al (2004) IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Invest 113: 1271–6

    PubMed  CAS  Google Scholar 

  41. Lee P, Peng H, Galbart T et al (2005) Regulation of hepcidin transcription by interleukin-1 and interleukin-6. Proc Natl Acad Sci USA 102: 1906–10

    Article  PubMed  CAS  Google Scholar 

  42. Nemeth E, Ganz T (2006) Regulation of iron metabolism by hepcidin. Annu Rev Nutr 26: 323–42

    Article  PubMed  CAS  Google Scholar 

  43. Sasaki A, Yasukawa H, Shouda T et al (2000) CIS/SOCS-3 suppresses erythropoietin (EPO) signaling by binding the EPO receptor and JAK2. J Biol Chem 275: 29338–47

    Article  PubMed  CAS  Google Scholar 

  44. Nakahara H, Song J, Sugimoto M et al (2003) Anti-interleukin-6 receptor antibody therapy reduces vascular endothelial growth factor production in rheumatoid arthritis. Arthritis Rheum 48: 1521–9

    Article  PubMed  CAS  Google Scholar 

  45. Tamura T, Udagawa N, Takahashi N et al (1993) Soluble interleukin-6 receptor triggers osteoclast formation by interleukin-6. Proc Natl Acad Sci USA 90: 11924–8

    Article  PubMed  CAS  Google Scholar 

  46. Mangan PR, Harrington LE, O’Quinn DB et al (2006) Transforming growth factor-_ induces development of the TH17 lineage. Nature 441: 231–234

    Article  PubMed  CAS  Google Scholar 

  47. Bettelli E, Carrier Y, Gao W et al (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441: 235–238

    Article  PubMed  CAS  Google Scholar 

  48. Veldhoen M, Hocking RJ, Atkins CJ et al (2006) TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24: 179–189

    Article  PubMed  CAS  Google Scholar 

  49. Kimura A, Naka T, Kishimoto T et al (2007) IL-6-dependent and independent pathways in the development of interleukin 17-producing T helper cells. Proc Natl Acad Sci USA 104: 12099–104

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Ohsugi, Y., Kishimoto, T. (2009). Immunobiology of IL-6 — Tocilizumab (humanised anti-IL-6 receptor antibody) for the treatment of rheumatoid arthritis. In: Tak, PP. (eds) New Therapeutic Targets in Rheumatoid Arthritis. Progress in Inflammation Research. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8238-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7643-8238-4_3

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-7643-8237-7

  • Online ISBN: 978-3-7643-8238-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics