Skip to main content

Decoherence of a Quantum Bit Circuit

  • Chapter
Quantum Decoherence

Abstract

Solid state quantum bit circuits (qubits) are candidates for the implementation of quantum processors, which can in principle perform some computational tasks beyond reach of classical sequential processors. Decoherence is there a key issue since electrical circuits are more prone to decoherence than microscopic objects such as atoms. We introduce the different families of solid state qubits, which are either based on single particle states in semiconductor nanostructures, or on global quantum states of superconducting Josephson circuits. We treat more in detail the Cooper pair box Josephson circuit, and the quantronium circuit derived from it. In this device, a decoupling strategy of the circuit from the outside circuitry allows to improve quantum coherence. We expose results obtained on the manipulation of the qubit state in the quantronium. We develop a general framework for understanding decoherence in qubit circuits, and show how coherence time measurements allow to characterize noise sources coup.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.A. Nielsen and I.L. Chuang, “Quantum Computation and Quantum Information” (Cambridge University Press, Cambridge, 2000.

    MATH  Google Scholar 

  2. Quantum Coherence and Information Processing, edited by D. Estève, J.M. Raimond and J. Dalibard (Elsevier, 2004).

    Google Scholar 

  3. S. Haroche, course 2 in J.M. Raimond and J. Dalibard (Elsevier, 2004) ref. 2; M. Brune, course 3 in ref. 2.

    Google Scholar 

  4. R. Blatt, H. Häffner, C.F. Ross, C. Becher and F. Schmidt-Kaler, course 5 in J.M. Raimond and J. Dalibard (Elsevier, 2004) ref. 2; D.J. Wineland, course 6 in ref. 2.

    Google Scholar 

  5. C. Glattli, course 11 in J.M. Raimond and J. Dalibard (Elsevier, 2004) ref. 2.

    Google Scholar 

  6. M.H. Devoret and J. Martinis, course 12 in J.M. Raimond and J. Dalibard (Elsevier, 2004) ref. 2.

    Google Scholar 

  7. J. Martinis, course 13 in J.M. Raimond and J. Dalibard (Elsevier, 2004) ref. 2.

    Google Scholar 

  8. D. Vion, course 14 in J.M. Raimond and J. Dalibard (Elsevier, 2004) ref. 2.

    Google Scholar 

  9. B. E. Kane, Nature 393 (1998), 133.

    Article  Google Scholar 

  10. T. Hayashi, T. Fujisawa, H. D. Cheong, Y. H. Jeong and Y. Hirayama, Phys. Rev. Lett. 91 (2003), 226804.

    Article  Google Scholar 

  11. J. Gorman, D.G. Hasko and D.A. Williams, Phys. Rev. Lett. 95 (2005), 090502.

    Article  Google Scholar 

  12. J. M. Elzerman, R. Hanson, L. H. Willems van Beveren, B. Witkamp, J. S. Greidanus, R. N. Schouten, S. De Franceschi, S. Tarucha, L. M. K. Vandersypen and L.P. Kouwenhoven, Quantum Dots: a Doorway to Nanoscale Physics, in Series: Lecture Notes in Physics, 667, Heiss, WD. (Ed.), (2005), and refs. therein.

    Google Scholar 

  13. A. C. Johnson, J. R. Petta, J. M. Taylor, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, A. C. Gossard, Nature 435 (2005), 925.

    Article  Google Scholar 

  14. M.H. Devoret, in “Quantum Fluctuations”, S. Reynaud, E. Giacobino, J. Zinn-Justin, eds. (Elsevier, Amsterdam, 1996), p.351.

    Google Scholar 

  15. Guido Burkard, Roger H. Koch and David P. DiVincenzo, Phys. Rev. B 69 (2004), 064503.

    Article  Google Scholar 

  16. J. M. Martinis, S. Nam, J. Aumentado and C. Urbina, Phys. Rev. Lett. 89 (2002), 117901.

    Article  Google Scholar 

  17. J. E. Mooij, T. P. Orlando, L. Levitov, Lin Tian, Caspar H. van der Wal and Seth Lloyd, Science 285 (1999), 1036.

    Article  Google Scholar 

  18. I. Chiorescu, Y. Nakamura, C. J. P. M. Harmans and J. E. Mooij, Science 299 (2003), 1869.

    Article  Google Scholar 

  19. A. Cottet, D. Vion, P. Joyez, P. Aassime, D. Estève and M.H. Devoret, Physica C 367 (2002), 197.

    Article  Google Scholar 

  20. D. Vion et al., Science 296 (2002), 886.

    Article  Google Scholar 

  21. A. Cottet, Implementation of a quantum bit in a superconducting circuit, PhD thesis, Université Paris VI, (2002); www-drecam.cea.fr/drecam/spec/Pres/Quantro/.

    Google Scholar 

  22. Y. Nakamura, Yu. A. Pashkin and J. S. Tsai, Nature 398 (1999), 786.

    Article  Google Scholar 

  23. V. Bouchiat, D. Vion, P. Joyez, D. Estève and M.H. Devoret, Physica Scripta 76 (1998), 165; V. Bouchiat, PhD thesis, Université Paris VI, (1997), www-drecam.cea.fr/drecam/spec/Pres/Quantro/.

    Article  Google Scholar 

  24. Single Charge Tunneling, edited by H. Grabert and M. H. Devoret (Plenum Press, New York, 1992).

    Google Scholar 

  25. T. Duty, D. Gunnarsson, K. Bladh and P. Delsing, Phys. Rev. B 69 (2004), 140503.

    Article  Google Scholar 

  26. R.J. Schoelkopf et al., Science 280 (1998), 1238.

    Article  Google Scholar 

  27. O. Astafiev, Yu. A. Pashkin, Y. Nakamura, T. Yamamoto and J. S. Tsai, Phys. Rev. Lett. 93 (2004), 267007.

    Article  Google Scholar 

  28. A. Wallraff, D. Schuster,.-I.; A. Blais; L. Frunzio; R.-S. Huang,-J. Majer, S. Kumar, S.M. Girvin, R.J. Schoelkopf, Nature 431 (2004), 162; and p. 591 in ref. 2.

    Article  Google Scholar 

  29. Y. Makhlin, G. Schön and A. Shnirman, Rev. Mod. Phy 73 (2001), 357.

    Article  Google Scholar 

  30. A. Lupascu,.J.M. Verwijs, R.N. Schouten, C.J.P.M. Harmans and J.E. Mooij, Phys. Rev. Lett. 93 (2004), 177006.

    Article  Google Scholar 

  31. I. Siddiqi, R. Vijay, F. Pierre, C. M. Wilson, M. Metcalfe, C. Rigetti, L. Frunzio, R.J. Schoelkopf, M. H. Devoret, D. Vion and D. Estève, Phys. Rev. Lett. 94 (2005), 027005.

    Article  Google Scholar 

  32. I. Siddiqi, R. Vijay, F. Pierre, C. M.Wilson, M. Metcalfe, C. Rigetti, L. Frunzio and M. H. Devoret, Phys. Rev. Lett. 93 (2004), 207002.

    Article  Google Scholar 

  33. Mika A. Sillanpää, Leif Roschier and Pertti J. Hakonen, Phys. Rev. Lett. 93 (2004), 066805x.

    Article  Google Scholar 

  34. I. Siddiqi et al., Cond-Mat 0507548. 93 (2004), 207002.

    Google Scholar 

  35. C.P. Slichter, Principles of Magnetic Resonance, Springer-Verlag (3rd ed: 1990).

    Google Scholar 

  36. J. Jones, course 10 in J.M. Raimond and J. Dalibard (Elsevier, 2004) ref. 2.

    Google Scholar 

  37. L.M.K. Vandersypen and I.L. Chuang, quant-ph/0404064.

    Google Scholar 

  38. D. Vion et al., Fortschritte der Physik 51 (2003), 462.

    Article  Google Scholar 

  39. E. Collin, G. Ithier, A. Aassime, P. Joyez, D. Vion and D. Estève, Phys. Rev. Lett. 93 (2004), 157005.

    Article  Google Scholar 

  40. H.K. Cummins, G. Llewellyn and J.A. Jones, Phys. Rev. A 67 (2003), 042308.

    Article  Google Scholar 

  41. G. Ithier et al., Phys. Rev. B. 72 (2005), 134519.

    Article  Google Scholar 

  42. K. B. Cooper, Matthias Steffen, R. McDermott, R. W. Simmonds, Seongshik Oh, D. A. Hite, D. P. Pappas and John M. Martinis, Phys. Rev. Lett. 93 (2004), 180401.

    Article  Google Scholar 

  43. G. Falci, A. D’Arrigo, A. Mastellone and E. Paladino, Phys. Rev. A 70 (2004), 040101; H. Gutmann, F.K. Wilhelm, W.M. Kaminsky and S. Lloyd, Quantum Information Processing 3 (2004), 247.

    Article  Google Scholar 

  44. T. Yamamoto et al., Nature 425 (2003), 941, and Yu. Pashkin et al., Nature 421 (2003), 823.

    Article  Google Scholar 

  45. R. McDermott, R. W. Simmonds, Matthias Steffen, K. B. Cooper, K. Cicak, K. D. Osborn, Seongshik Oh, D. P. Pappas and John M. Martinis, Science 307 (2005), 1299.

    Article  Google Scholar 

  46. I. Chiorescu, P. Bertet, K. Semba, Y. Nakamura, C. J. P. M. Harmans and J. E. Mooij, Nature 431 (2004), 159.

    Article  Google Scholar 

  47. J. Q. You, Y. Nakamura and F. Nori, Phys. Rev. B 71 (2005), 024532; J. Lantz, M. Wallquist, V. S. Shumeiko and G. Wendin, Phys. Rev. B 70 (2004), 140507.

    Article  Google Scholar 

  48. C. Rigetti, A. Blais and M. H. Devoret Phys. Rev. Lett. 94 (2005), 240502.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Verlag Basel

About this chapter

Cite this chapter

Ithier, G. et al. (2006). Decoherence of a Quantum Bit Circuit. In: Duplantier, B., Raimond, JM., Rivasseau, V. (eds) Quantum Decoherence. Progress in Mathematical Physics, vol 48. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7808-0_4

Download citation

Publish with us

Policies and ethics