Skip to main content

Eigenvalue Asymptotics Under a Non-dissipative Eigenvalue Dependent Boundary Condition for Second-order Elliptic Operators

  • Chapter
Functional Analysis and Evolution Equations

Abstract

The asymptotic behavior of the eigenvalue sequence of the eigenvalue problem

$$ - \Delta \phi + q\left( x \right)\phi = \lambda \phi $$

in a bounded Lipschitz domain D ⊂ ℝN under the eigenvalue dependent boundary condition

$$ \varphi n = \sigma \lambda \varphi $$

with a continuous function Σ is investigated in the case Σ ≢ 0, the dissipative one Σ ≥ 0 having been settled in [6]. For N = 1 the eigenvalues grow like k 2 with leading asymptotic coefficient equal to the Weyl constant. For N ≥ 2 the positive eigenvalues grow like k 2/N , while the negative eigenvalues grow in absolute value like |k|1/(N−1). Moreover, asymptotic bounds in dependence on the dynamical coefficient function Σ are derived, firstly in the constant case, secondly for Σ of constant sign, and finally for a function Σ changing sign.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Bandle and W. Reichel, A linear parabolic problem with non-dissipative dynamical boundary conditions, Recent advances in elliptic and parabolic problems, Proceedings of the 2004 Swiss-Japanese seminar in Zurich, World Scientific (2006).

    Google Scholar 

  2. C. Bandle, J. von Below and W. Reichel, Parabolic problems with dynamical boundary conditions: eigenvalue expansions and blow up, Rend. Lincei Mat. Appl. 17 (2006), 35–67.

    Google Scholar 

  3. C. Bandle, J. von Below and W. Reichel, Positivity and anti-maximum principles for elliptic operators with mixed boundary conditions, to appear in J. European Math. Soc.

    Google Scholar 

  4. J. von Below, Parabolic network equations, 2nd ed. Tübingen 1994, 3rd edition to appear.

    Google Scholar 

  5. J. von Below and G. François, Comportement spectral asymptotique d’un opérateur elliptique sous conditions au bord contenant la valeur propre, Tübinger Berichte zur Funktionalanalysis 14 (2004/2005) 5–11.

    Google Scholar 

  6. J. von Below and G. Francois, Spectral asymptotics for the Laplacian under an eigenvalue dependent boundary condition, Bull. Belgian Math. Soc. 12 (2005), 505–519.

    Google Scholar 

  7. J. von Below and S. Nicaise, Dynamical interface transition in ramified media with diffusion, Comm. Partial Differential Equations 21 (1996) 255–279.

    Article  MATH  MathSciNet  Google Scholar 

  8. R. Dautray and J.L. Lions, Analyse mathématique et calcul numérique, Masson, 1987.

    Google Scholar 

  9. N. Dunford and J. Schwartz, Linear operators II, Wiley Interscience, 1963.

    Google Scholar 

  10. M.S.P. Eastham, An eigenvalue problem with parameter in the boundary condition, Quart. J. Math. Oxford (2) 13 (1962) 304–320.

    Article  MATH  MathSciNet  Google Scholar 

  11. J. Ercolano and M. Schechter, Spectral theory for operators generated by elliptic boundary problems with eigenvalue parameter in boundary conditions, I, Comm. Pure Appl. Math. 18 (1965), 83–105.

    Article  MathSciNet  Google Scholar 

  12. G. François, Comportement spectral asymptotique provenant de problèmes paraboliques sous conditions au bord dynamiques, Doctoral Thesis ULCO, Calais 2002.

    Google Scholar 

  13. G. François, Spectral asymptotics stemming from parabolic equations under dynamical boundary conditions, Asymptotic Analysis 46 (2006), 43–52.

    MATH  MathSciNet  Google Scholar 

  14. T. Hintermann, Evolution equations with dynamic boundary conditions, Proc. Royal Soc. Edinburgh 113A (1989) 43–60.

    MathSciNet  Google Scholar 

  15. L. Sandgren, A vibration problem, Ph.D. Thesis, Lund Univ. Mat. Sem. Band 13, (1955) 1–84.

    MathSciNet  Google Scholar 

  16. M.G. Slinko and K. Hartmann, Methoden und Programme zur Berechnung chemischer Reaktoren, Akademie-Verlag Berlin, 1972.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

von Below, J., François, G. (2007). Eigenvalue Asymptotics Under a Non-dissipative Eigenvalue Dependent Boundary Condition for Second-order Elliptic Operators. In: Amann, H., Arendt, W., Hieber, M., Neubrander, F.M., Nicaise, S., von Below, J. (eds) Functional Analysis and Evolution Equations. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7794-6_5

Download citation

Publish with us

Policies and ethics