Skip to main content

Clifford-Jacobi Polynomials and the Associated Continuous Wavelet Transform in Euclidean Space

  • Conference paper
Wavelet Analysis and Applications

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

Specific wavelet kernel functions for a continuous wavelet transform in Euclidean space are presented within the framework of Clifford analysis. These multi-dimensional wavelets are constructed by taking the Clifford-monogenic extension to ℝm+1 of specific functions in ℝm generalizing the traditional Jacobi weights. The notion of Clifford-monogenic function is a direct higher dimensional generalization of that of holomorphic function in the complex plane. Moreover, crucial to this construction is the orthogonal decomposition of the space of square integrable functions into the Hardy space H 2 (ℝm) and its orthogonal complement. In this way a nice relationship is established between the theory of the Clifford Continuous Wavelet Transform on the one hand, and the theory of Hardy spaces on the other hand. Furthermore, also new multi-dimensional polynomials, the so-called Clifford-Jacobi polynomials, are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. K. Chui, An Introduction to Wavelets. Academic Press, Inc., San Diego, 1992.

    MATH  Google Scholar 

  2. I. Daubechies, Ten Lectures on Wavelets. SIAM, Philadelphia, 1992.

    MATH  Google Scholar 

  3. G. Kaiser, A Friendly Guide to Wavelets. Birkhäuser Verlag (Boston, 1994).

    Google Scholar 

  4. J.-P. Antoine, R. Murenzi, P. Vandergheynst and Syed Twareque Ali, Two-Dimensional Wavelets and their Relatives, Cambridge University Press, Cambridge, 2004.

    MATH  Google Scholar 

  5. F. Brackx, N. De Schepper and F. Sommen, New multivariable polynomials and their associated Continuous Wavelet Transform in the framework of Clifford Analysis. In: L.H. Son, W. Tutschke, S. Jain (eds.), Methods of Complex and Clifford Analysis (Proceedings of ICAM Hanoi 2004), SAS International Publication, Delhi, 2006, 275–294.

    Google Scholar 

  6. F. Brackx and F. Sommen, Clifford-Hermite Wavelets in Euclidean Space, Journal of Fourier Analysis and Applications 6, no. 3 (2000), 299–310.

    Article  MATH  MathSciNet  Google Scholar 

  7. F. Brackx and F. Sommen, The Generalized Clifford-Hermite Continuous Wavelet Transform, Advances in Applied Clifford Algebras 11(S1), 2001, 219–231.

    Article  MathSciNet  Google Scholar 

  8. F. Brackx, N. De Schepper and F. Sommen, The Bi-axial Clifford-Hermite Continuous Wavelet Transform, Journal of Natural Geometry 24 (2003), 81–100.

    MATH  Google Scholar 

  9. F. Brackx, N. De Schepper and F. Sommen, The Clifford-Laguerre Continuous Wavelet Transform, Bull. Belg. Math. Soc.-Simon Stevin 11(2), 2004, 201–215.

    MATH  MathSciNet  Google Scholar 

  10. F. Brackx, N. De Schepper and F. Sommen, The Clifford-Gegenbauer Polynomials and the Associated Continuous Wavelet Transform, Integral Transform. Spec. Funct. 15 (2004), no. 5, 387–404.

    Article  MATH  Google Scholar 

  11. F. Brackx, R. Delanghe and F. Sommen, Clifford Analysis, Pitman Publ., Boston, London, Melbourne, 1982.

    MATH  Google Scholar 

  12. R. Delanghe, F. Sommen and V. Souček, Clifford Algebra and Spinor-Valued Functions. Kluwer Acad. Publ., Dordrecht, 1992.

    MATH  Google Scholar 

  13. J. Gilbert and M. Murray, Clifford Algebras and Dirac operators in harmonic analysis, Cambridge: University Press 1991.

    MATH  Google Scholar 

  14. F. Sommen, Some connections between complex analysis and Clifford analysis. Complex Variables: Theory and Application 1 (1982), 97–118.

    MATH  MathSciNet  Google Scholar 

  15. C. Li, A. McIntosh and T. Qian, Clifford algebras, Fourier transforms and singular convolution operator s on Lipschitz surfaces, Revista Matematica Iberoamericana 10 (1994), no. 3, 665–721.

    MATH  MathSciNet  Google Scholar 

  16. A. McIntosh, Clifford Algebras, Fourier Theory, Singular Integrals and Harmonic Functions on Lipschitz Domains. In: J. Ryan (ed.), Clifford Algebras in Analysis and Related Topics, CRC Press, Boca Raton, 1996, 33–87.

    Google Scholar 

  17. J. Peetre and T. Qian, Möbius covariance of iterated Dirac operators, J. Austral. Math. Soc. (Series A) 56 (1994), 1–12.

    MathSciNet  Google Scholar 

  18. F. Brackx, N. De Schepper and F. Sommen, Clifford algebra-valued orthogonal polynomials in the open unit ball of Euclidean Space, International Journal of Mathematics and Mathematical Sciences 52 (2004), 2761–2772.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Brackx, F., De Schepper, N., Sommen, F. (2006). Clifford-Jacobi Polynomials and the Associated Continuous Wavelet Transform in Euclidean Space. In: Qian, T., Vai, M.I., Xu, Y. (eds) Wavelet Analysis and Applications. Applied and Numerical Harmonic Analysis. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7778-6_16

Download citation

Publish with us

Policies and ethics