Skip to main content

Chemical genetics: An evolving toolbox for target identification and lead optimization

  • Chapter
Systems Biological Approaches in Infectious Diseases

Part of the book series: Progress in Drug Research ((PDR,volume 64))

Abstract

Chemical genetics combines chemistry with biology as a means of exploring the function of unknown proteins or identifying the proteins responsible for a particular phenotype. Chemical genetics is thus a valuable tool in the identification of novel drug targets. This chapter describes the application of chemical genetics in traditional and systems-based approaches to drug target discovery and the tools/approaches that appear most promising for guiding future pharmaceutical development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fraser CM, Gocayne JD, White O, Adams MD, Clayton RA, Fleischmann RD, Bult CJ, Kerlavage AR, Sutton G, Kelley JM et al (1995) The minimal gene complement of Mycoplasma genitalium. Science 270: 397–403

    Article  PubMed  CAS  Google Scholar 

  2. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W et al (2001) Initial sequencing and analysis of the human genome. Nature 409: 860–921

    Article  PubMed  CAS  Google Scholar 

  3. Mawuenyega KG, Forst CV, Dobos KM, Belisle JT, Chen J, Bradbury EM, Bradbury AR, Chen X (2005) Mycobacterium tuberculosis functional network analysis by global subcellular protein profiling. Mol Biol Cell 16: 396–404

    Article  PubMed  CAS  Google Scholar 

  4. Rain JC, Selig L, De Reuse H, Battaglia V, Reverdy C, Simon S, Lenzen G, Petel F, Wojcik J, Schachter V et al (2001) The protein-protein interaction map of Helicobacter pylori. Nature 409: 211–215

    Article  PubMed  CAS  Google Scholar 

  5. LaCount DJ, Vignali M, Chettier R, Phansalkar A, Bell R, Hesselberth JR, Schoenfeld LW, Ota I, Sahasrabudhe S, Kurschner C et al (2005) A protein interaction network of the malaria parasite Plasmodium falciparum. Nature 438: 103–107

    Article  PubMed  CAS  Google Scholar 

  6. Malek JA, Wierzbowski JM, Tao W, Bosak SA, Saranga DJ, Doucette-Stamm L, Smith DR, McEwan PJ, McKernan KJ (2004) Protein interaction mapping on a functional shotgun sequence of Rickettsia sibirica. Nucleic Acids Res 32: 1059–1064

    Article  PubMed  CAS  Google Scholar 

  7. Hutchison CA, Peterson SN, Gill SR, Cline RT, White O, Fraser CM, Smith HO, Venter JC (1999) Global transposon mutagenesis and a minimal Mycoplasma genome. Science 286: 2165–2169

    Article  PubMed  CAS  Google Scholar 

  8. Akerley BJ, Rubin EJ, Novick VL, Amaya K, Judson N, Mekalanos JJ (2002) A genome-scale analysis for identification of genes required for growth or survival of Haemophilus influenzae. Proc Natl Acad Sci USA 99: 966–971

    Article  PubMed  CAS  Google Scholar 

  9. Sassetti CM, Boyd DH, Rubin EJ (2003) Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48: 77–84

    Article  PubMed  CAS  Google Scholar 

  10. Sassetti CM, Rubin EJ (2003) Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci USA 100: 12989–12994

    Article  PubMed  CAS  Google Scholar 

  11. Blokpoel MC, Smeulders MJ, Hubbard JA, Keer J, Williams HD (2005) Global analysis of proteins synthesized by Mycobacterium smegmatis provides direct evidence for physiological heterogeneity in stationary-phase cultures. J Bacteriol 187: 6691–6700

    Article  PubMed  CAS  Google Scholar 

  12. Ehrt S, Guo XV, Hickey CM, Ryou M, Monteleone M, Riley LW, Schnappinger D (2005) Controlling gene expression in mycobacteria with anhydrotetracycline and Tet repressor. Nucleic Acids Res 33: e21

    Article  PubMed  Google Scholar 

  13. Huang J, Zhu H, Haggarty SJ, Spring DR, Hwang H, Jin F, Snyder M, Schreiber SL (2004) Finding new components of the target of rapamycin (TOR) signaling network through chemical genetics and proteome chips. Proc Natl Acad Sci USA 101: 16594–16599

    Article  PubMed  CAS  Google Scholar 

  14. Koeller KM, Haggarty SJ, Perkins BD, Leykin I, Wong JC, Kao MC, Schreiber SL (2003) Chemical genetic modifier screens: small molecule trichostatin suppressors as probes of intracellular histone and tubulin acetylation. Chem Biol 10: 397–410

    Article  PubMed  CAS  Google Scholar 

  15. Haggarty SJ, Clemons PA, Wong JC, Schreiber SL (2004) Mapping chemical space using molecular descriptors and chemical genetics: deacetylase inhibitors. Comb Chem High Throughput Screen 7: 669–676

    PubMed  CAS  Google Scholar 

  16. Chen J, Swamidass SJ, Dou Y, Bruand J, Baldi P (2005) ChemDB: a public database of small molecules and related chemoinformatics resources. Bioinformatics 21: 4133–4139

    Article  PubMed  CAS  Google Scholar 

  17. Mitchison TJ (2005) Small-molecule screening and profiling by using automated microscopy. Chembiochem 6: 33–39

    Article  PubMed  CAS  Google Scholar 

  18. Lokey RS (2003) Forward chemical genetics: progress and obstacles on the path to a new pharmacopoeia. Curr Opin Chem Biol 7: 91–96

    Article  PubMed  CAS  Google Scholar 

  19. Clemons PA (2004) Complex phenotypic assays in high-throughput screening. Curr Opin Chem Biol 8: 334–338

    Article  PubMed  CAS  Google Scholar 

  20. Wilson CJ, Si Y, Thompsons CM, Smellie A, Ashwell MA, Liu JF, Ye P, Yohannes D, Ng SC (2006) Identification of a small molecule that induces mitotic arrest using a simplified high-content screening assay and data analysis method. J Biomol Screen 11: 21–28

    Article  PubMed  CAS  Google Scholar 

  21. Stockwell BR, Haggarty SJ, Schreiber SL (1999) High-throughput screening of small molecules in miniaturized mammalian cell-based assays involving posttranslational modifications. Chem Biol 6: 71–83

    Article  PubMed  CAS  Google Scholar 

  22. Peterson RT, Link BA, Dowling JE, Schreiber SL (2000) Small molecule developmental screens reveal the logic and timing of vertebrate development. Proc Natl Acad Sci USA 97: 12965–12969

    Article  PubMed  CAS  Google Scholar 

  23. Khersonsky SM, Jung DW, Kang TW, Walsh DP, Moon HS, Jo H, Jacobson EM, Shetty V, Neubert TA, Chang YT (2003) Facilitated forward chemical genetics using a tagged triazine library and zebrafish embryo screening. J Am Chem Soc 125: 11804–11805

    Article  PubMed  CAS  Google Scholar 

  24. den Hertog J (2005) Chemical genetics: Drug screens in Zebrafish. Biosci Rep 25: 289–297

    Article  CAS  Google Scholar 

  25. Milan DJ, Peterson TA, Ruskin JN, Peterson RT, MacRae CA (2003) Drugs that induce repolarization abnormalities cause bradycardia in zebrafish. Circulation 107: 1355–1358

    Article  PubMed  Google Scholar 

  26. Bailey SN, Sabatini DM, Stockwell BR (2004) Microarrays of small molecules embedded in biodegradable polymers for use in mammalian cell-based screens. Proc Natl Acad Sci USA 101: 16144–16149

    Article  PubMed  CAS  Google Scholar 

  27. Schiff PB, Fant J, Horwitz SB (1979) Promotion of microtubule assembly in vitro by taxol. Nature 277: 665–667

    Article  PubMed  CAS  Google Scholar 

  28. Yura T, Ishihama A (1979) Genetics of bacterial RNA polymerases. Annu Rev Genet 13: 59–97

    Article  PubMed  CAS  Google Scholar 

  29. Mitsopoulos G, Walsh DP, Chang YT (2004) Tagged library approach to chemical genomics and proteomics. Curr Opin Chem Biol 8: 26–32

    Article  PubMed  CAS  Google Scholar 

  30. Harding MW, Galat A, Uehling DE, Schreiber SL (1989) A receptor for the immunosuppressant FK506 is a cis-trans peptidyl-prolyl isomerase. Nature 341: 758–760

    Article  PubMed  CAS  Google Scholar 

  31. Miller DK, Gillard JW, Vickers PJ, Sadowski S, Leveille C, Mancini JA, Charleson P, Dixon RA, Ford-Hutchinson AW, Fortin R et al (1990) Identification and isolation of a membrane protein necessary for leukotriene production. Nature 343: 278–281

    Article  PubMed  CAS  Google Scholar 

  32. Siekierka JJ, Hung SH, Poe M, Lin CS, Sigal NH (1989) A cytosolic binding protein for the immunosuppressant FK506 has peptidyl-prolyl isomerase activity but is distinct from cyclophilin. Nature 341: 755–757

    Article  PubMed  CAS  Google Scholar 

  33. Siekierka JJ, Staruch MJ, Hung SH, Sigal NH (1989) FK-506, a potent novel immunosuppressive agent, binds to a cytosolic protein which is distinct from the cyclosporin A-binding protein, cyclophilin. J Immunol 143: 1580–1583

    PubMed  CAS  Google Scholar 

  34. Towbin H, Bair KW, DeCaprio JA, Eck MJ, Kim S, Kinder FR, Morollo A, Mueller DR, Schindler P, Song HK et al (2003) Proteomics-based target identification: bengamides as a new class of methionine aminopeptidase inhibitors. J BiolChem 278: 52964–52971

    CAS  Google Scholar 

  35. Lum PY, Armour CD, Stepaniants SB, Cavet G, Wolf MK, Butler JS, Hinshaw JC, Garnier P, Prestwich GD, Leonardson A et al (2004) Discovering modes of action for therapeutic compounds using a genome-wide screen of yeast heterozygotes. Cell 116: 121–137

    Article  PubMed  CAS  Google Scholar 

  36. Li X, Zolli-Juran M, Cechetto JD, Daigle DM, Wright GD, Brown ED (2004) Multicopy suppressors for novel antibacterial compounds reveal targets and drug efflux susceptibility. Chem Biol 11: 1423–1430

    Article  PubMed  CAS  Google Scholar 

  37. McPherson M, Yang Y, Hammond PW, Kreider BL (2002) Drug receptor identification from multiple tissues using cellular-derived mRNA display libraries. Chem Biol 9: 691–698

    Article  PubMed  CAS  Google Scholar 

  38. Boshoff HI, Myers TG, Copp BR, McNeil MR, Wilson MA, Barry CE 3rd (2004) The transcriptional responses of Mycobacterium tuberculosis to inhibitors of metabolism: novel insights into drug mechanisms of action. J Biol Chem 279: 40174–40184

    Article  PubMed  CAS  Google Scholar 

  39. Butcher RA, Schreiber SL (2005) Using genome-wide transcriptional profiling to elucidate small-molecule mechanism. Curr Opin Chem Biol 9: 25–30

    Article  PubMed  CAS  Google Scholar 

  40. Kung C, Shokat KM (2005) Small-molecule kinase-inhibitor target assessment. Chembiochem 6: 523–526

    Article  PubMed  CAS  Google Scholar 

  41. Burdine L, Kodadek T (2004) Target identification in chemical genetics: the (often) missing link. Chem Biol 11: 593–597

    Article  PubMed  CAS  Google Scholar 

  42. Ranish JA, Yi EC, Leslie DM, Purvine SO, Goodlett DR, Eng J, Aebersold R (2003) The study of macromolecular complexes by quantitative proteomics. Nat Genet 33: 349–355

    Article  PubMed  CAS  Google Scholar 

  43. Fantin VR, Berardi MJ, Scorrano L, Korsmeyer SJ, Leder P (2002) A novel mitochondriotoxic small molecule that selectively inhibits tumor cell growth. Cancer Cell 2: 29–42

    Article  PubMed  CAS  Google Scholar 

  44. Torrance CJ, Agrawal V, Vogelstein B, Kinzler KW (2001) Use of isogenic human cancer cells for high-throughput screening and drug discovery. Nat Biotechnol 19: 940–945

    Article  PubMed  CAS  Google Scholar 

  45. Simons A, Dafni N, Dotan I, Oron Y, Canaani D (2001) Establishment of a chemical synthetic lethality screen in cultured human cells. Genome Res 11: 266–273

    Article  PubMed  CAS  Google Scholar 

  46. Khersonsky SM, Chang YT (2004) Strategies for facilitated forward chemical genetics. Chembiochem 5: 903–908

    Article  PubMed  CAS  Google Scholar 

  47. Khersonsky SM, Chang YT (2004) Forward chemical genetics: library scaffold design. Comb Chem High Throughput Screen 7: 645–652

    PubMed  CAS  Google Scholar 

  48. Stockwell BR (2004) Exploring biology with small organic molecules. Nature 432: 846–854

    Article  PubMed  CAS  Google Scholar 

  49. Nicolaou KC, Pfefferkorn JA, Barluenga S, Mitchell HJ, Roecker AJ, Cao G-Q (2000) Natural product-like combinatorial libraries based on privileged structures. 3. The “Libraries from Libraries” principle for diversity enhancement of benzopyran libraries. J Am Chem Soc 122: 9968–9976

    Article  CAS  Google Scholar 

  50. Nicolaou KC, Pfefferkorn JA, Mitchell HJ, Roecker AJ, Barluenga S, Cao G-Q, Affleck RL, Lillig JE (2000) Natural product-like combinatorial libraries based on privileged structures. 2. Construction of a 10,000-membered benzopyran library by directed split-and-pool chemistry using nanokans and optical encoding. J Am Chem Soc 122: 9954–9967

    Article  CAS  Google Scholar 

  51. Nicolaou KC, Pfefferkorn JA, Roecker AJ, Cao G-Q, Barluenga S, Mitchell HJ (2000) Natural product-like combinatorial libraries based on privileged structures. 1. General Principles and solid-phase synthesis of benzopyrans. J Am Chem Soc 122: 9939–9953

    Article  CAS  Google Scholar 

  52. Tan DS, Foley MA, Stockwell BR, Shair MD, Shreiber SL (1999) Synthesis and preliminary evaluation of a library of polycyclic small molecules for use in chemical genetic assays. J Am Chem Soc 121: 9073–9087

    Article  CAS  Google Scholar 

  53. Gray NS, Wodicka L, Thunnissen AM, Norman TC, Kwon S, Espinoza FH, Morgan DO, Barnes G, LeClerc S, Meijer L et al (1998) Exploiting chemical libraries, structure, and genomics in the search for kinase inhibitors. Science 281: 533–538

    Article  PubMed  CAS  Google Scholar 

  54. Armstrong JI, Portley AR, Chang YT, Nierengarten DM, Cook BN, Bowman KG, Bishop A, Gray NS, Shokat KM, Schultz PG et al (2000) Discovery of carbohydrate sulfotransferase inhibitors from a kinase-directed library. Angew Chem Int Ed Engl 39: 1303–1306

    Article  PubMed  CAS  Google Scholar 

  55. Verdugo DE, Cancilla MT, Ge X, Gray NS, Chang YT, Schultz PG, Negishi M, Leary JA, Bertozzi CR (2001) Discovery of estrogen sulfotransferase inhibitors from a purine library screen. J Med Chem 44: 2683–2686

    Article  PubMed  CAS  Google Scholar 

  56. Wu X, Ding S, Ding Q, Gray NS, Schultz PG (2002) A small molecule with osteogenesis-inducing activity in multipotent mesenchymal progenitor cells. J Am Chem Soc 124: 14520–14521

    Article  PubMed  CAS  Google Scholar 

  57. Chang YT, Wignall SM, Rosania GR, Gray NS, Hanson SR, Su AI, Merlie J Jr, Moon HS, Sangankar SB, Perez O et al (2001) Synthesis and biological evaluation of myoseverin derivatives: microtubule assembly inhibitors. J Med Chem 44: 4497–4500

    Article  PubMed  CAS  Google Scholar 

  58. Rosania GR, Chang YT, Perez O, Sutherlin D, Dong H, Lockhart DJ, Schultz PG (2000) Myoseverin, a microtubule-binding molecule with novel cellular effects. Nat Biotechnol 18: 304–308

    Article  PubMed  CAS  Google Scholar 

  59. Chang Y-T, Choi J, Ding S, Prieschl EE, Baumruker T, Lee J-M, Chung S-K, Schultz PG (2002) The synthesis and biological characterization of a ceramide library. J Am Chem Soc 124: 1856–1857

    Article  PubMed  CAS  Google Scholar 

  60. Kim SW, Hong CY, Lee K, Lee EJ, Koh JS (1998) Solid phase synthesis of benzyl-amine-derived sulfonamide library. Bioorg Med Chem Lett 8: 735–738

    Article  PubMed  CAS  Google Scholar 

  61. Ryckebuscha A, Déprez-Poulaina R, Debreu-Fontainea M-A, Vandaelea R, Mourayb E, Grellierb P, Sergheraert C (2002) Parallel synthesis and anti-malarial activity of a sulfonamide library. Bioorg Med Chem Lett 12: 2595–2598

    Article  Google Scholar 

  62. Yokoi A, Kuromitsu J, Kawai T, Nagasu T, Sugi NH, Yoshimatsu K, Yoshino H, Owa T (2002) Profiling novel sulfonamide antitumor agents with cell-based phenotypic screens and array-based gene expression analysis. Mol Cancer Ther 1: 275–286

    PubMed  CAS  Google Scholar 

  63. Shuker SB, Hajduk PJ, Meadows RP, Fesik SW (1996) Discovering high-affinity ligands for proteins: SAR by NMR. Science 274: 1531–1534

    Article  PubMed  CAS  Google Scholar 

  64. Olejniczak ET, Hajduk PJ, Marcotte PA, Nettesheim DG, Meadows RP, Edalji R, Holzman TF, Fesik SW (1997) Stromelysin inhibitors designed from weakly bound fragments: effects of linking and cooperativity. J AmChem Soc 119: 5828–5832

    Article  CAS  Google Scholar 

  65. Hajduk PJ, Sheppard G, Nettesheim DG, Olejniczak ET, Shuker SB, Meadows RP, Steinman DH, Carrera J, Marcotte PA, Severin J et al (1997) Discovery of Potent nonpeptide inhibitors of stromelysin using SAR by NMR. J Am Chem Soc 119: 5818–5827

    Article  CAS  Google Scholar 

  66. Petros AM, Dinges J, Augeri DJ, Baumeister SA, Betebenner DA, Bures MG, Elmore SW, Hajduk PJ, Joseph MK, Landis SK et al (2006) Discovery of a potent inhibitor of the antiapoptotic protein Bcl-xL from NMR and parallel synthesis. JMed Chem 49: 656–663

    Article  CAS  Google Scholar 

  67. Becattini B, Sareth S, Zhai D, Crowell KJ, Leone M, Reed JC, Pellecchia M (2004) Targeting apoptosis via chemical design: inhibition of bid-induced cell death by small organic molecules. Chem Biol 11: 1107–1117

    Article  PubMed  CAS  Google Scholar 

  68. Fejzo J, Lepre CA, Peng JW, Bemis GW, Ajay, Murcko MA, Moore JM (1999) The SHAPES strategy: an NMR-based approach for lead generation in drug discovery. Chem Biol 6: 755–769

    Article  PubMed  CAS  Google Scholar 

  69. Sem DS, Bertolaet B, Baker B, Chang E, Costache AD, Coutts S, Dong Q, Hansen M, Hong V, Huang X et al (2004) Systems-based design of bi-ligand inhibitors of oxidoreductases: filling the chemical proteomic toolbox. Chem Biol 11: 185–194

    Article  PubMed  CAS  Google Scholar 

  70. Erlanson DA, Braisted AC, Raphael DR, Randal M, Stroud RM, Gordon EM, Wells JA (2000) Site-directed ligand discovery. Proc Natl Acad Sci USA 97: 9367–9372

    Article  PubMed  CAS  Google Scholar 

  71. Maly DJ, Choong IC, Ellman JA (2000) Combinatorial target-guided ligand assembly: identification of potent subtype-selective c-Src inhibitors. ProcNatl Acad Sci USA 97: 2419–2424

    Article  CAS  Google Scholar 

  72. Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: Diverse chemical function from a few good reactions. Angew Chem Int Ed Engl 40: 2004–2021

    Article  PubMed  CAS  Google Scholar 

  73. Lewis WG, Green LG, Grynszpan F, Radic Z, Carlier PR, Taylor P, Finn MG, Sharpless KB (2002) Click chemistry in situ: acetylcholinesterase as a reaction vessel for the selective assembly of a femtomolar inhibitor from an array of building blocks. Angew Chem Int Ed Engl 41: 1053–1057

    PubMed  CAS  Google Scholar 

  74. Manetsch R, Krasiski A, Radi Z, Raushel J, Taylor P, Sharpless KB, Kolb HC (2004) In situ click chemistry: Enzyme inhibitors made to their own specifications. J Am Chem Soc 126: 12809–12818

    PubMed  CAS  Google Scholar 

  75. Walsh DP, Chang YT (2004) Recent advances in small molecule microarrays: applications and technology. Comb Chem High Throughput Screen 7: 557–564

    PubMed  CAS  Google Scholar 

  76. Koehler AN, Shamji AF, Schreiber SL (2003) Discovery of an inhibitor of a transcription factor using small molecule microarrays and diversity-oriented synthesis. J AmChem Soc 125: 8420–8421

    Article  CAS  Google Scholar 

  77. Winssinger N, Damoiseaux R, Tully DC, Geierstanger BH, Burdick K, Harris JL (2004) PNA-encoded protease substrate microarrays. Chem Biol 11: 1351–1360

    Article  PubMed  CAS  Google Scholar 

  78. Winssinger N, Ficarro S, Schultz PG, Harris JL (2002) Profiling protein function with small molecule microarrays. Proc Natl Acad Sci USA 99: 11139–11144

    Article  PubMed  CAS  Google Scholar 

  79. Annis DA, Nazef N, Chuang CC, Scott MP, Nash HM (2004) A general technique to rank protein-ligand binding affinities and determine allosteric versus direct binding site competition in compound mixtures. J Am Chem Soc 126: 15495–15503

    PubMed  CAS  Google Scholar 

  80. Lewis LM, Engle LJ, Pierceall WE, Hughes DE, Shaw KJ (2004) Affinity capillary electrophoresis for the screening of novel antimicrobial targets. J Biomol Screen 9: 303–308

    Article  PubMed  CAS  Google Scholar 

  81. Juris SJ, Shah K, Shokat K, Dixon JE, Vacratsis PO (2006) Identification of otubain 1 as a novel substrate for the Yersinia protein kinase using chemical genetics and mass spectrometry. FEBS Lett 580: 179–183

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Verlag

About this chapter

Cite this chapter

Boshoff, H.I., Dowd, C.S. (2007). Chemical genetics: An evolving toolbox for target identification and lead optimization. In: Boshoff, H.I., Barry, C.E. (eds) Systems Biological Approaches in Infectious Diseases. Progress in Drug Research, vol 64. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7567-6_3

Download citation

Publish with us

Policies and ethics