Skip to main content

Gene transfer technology

  • Chapter
In Vivo Models of Inflammation

Part of the book series: Progress in Inflammation Research ((PIR))

  • 945 Accesses

Conclusion

In vivo gene transfer is a useful tool for generating animal models of disease, and for validating pathways that are involved in disease. The understanding that is gained through this technology can provide the information needed to develop new therapeutics specifically targeted at the pathways of interest. The choice of gene transfer vector will depend on the tissue and cell types to be transduced, the levels of gene expression needed, and the duration of gene expression. Recent advances in generating recombinant viral vectors, and the identification of new serotypes with different tropism, allow for the generation of a wide range of animal models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Verma IM, Weitzman MD (2005) Gene therapy: Twenty-first century medicine. Ann Rev Biochem 74: 711–738

    Article  PubMed  CAS  Google Scholar 

  2. Caplen NJ (2004) Gene therapy progress and prospects. Downregulating gene expression: the impact of RNA interference. Gene Ther 11: 1241–1248

    Article  PubMed  CAS  Google Scholar 

  3. Bagheri S, Kashani-Sabet M (2004) Ribozymes in the age of molecular therapeutics. Curr Mol Med 4: 489–506

    Article  PubMed  CAS  Google Scholar 

  4. Herweijer H, Wolff JA (2003) Progress and prospects: naked DNA gene transfer and therapy. Gene Ther 10: 453–458

    Article  PubMed  CAS  Google Scholar 

  5. Chen ZY, He CY, Meuse L, Kay MA (2004) Silencing of episomal transgene expression by plasmid bacterial DNA elements in vivo. Gene Ther 11: 856–864

    Article  PubMed  CAS  Google Scholar 

  6. Chen ZY, He CY, Ehrhardt A, Kay MA (2003) Minicircle DNA vectors devoid of bacterial DNA result in persistent and high-level transgene expression in vivo. Mol Ther 8:495–500

    Article  PubMed  CAS  Google Scholar 

  7. Riu E, Grimm D, Huang Z, Kay MA (2005) Increased maintenance and persistence of transgenes by excision of expression cassettes from plasmid sequences in vivo. Hum Gene Ther 16: 558–570

    Article  PubMed  CAS  Google Scholar 

  8. Madry H, Cucchiarini M, Stein U, Remberger K, Kohn D, Trippel SB (2003) Sustained transgene expression in cartilage defects in vivo after transplantation of articular chondrocytes modified by lipid-mediated gene transfer in a gel suspension delivery system. J Gene Med 5: 502–509

    Article  PubMed  CAS  Google Scholar 

  9. Madry H, Kaul G, Cucchiarini M, Stein U, Zurakowski D, Remberger K, Menger MD, Kohn D, Trippel SB (2005) Enhanced repair of articular cartilage defects in vivo by transplanted chondrocytes overexpressing insulin-like growth factor I (IGF-I). Gene Ther 12: 1171–1179

    Article  PubMed  CAS  Google Scholar 

  10. Kobinger GP, Deng SP, Louboutin JP, Vatamaniuk M, Matschinsky F, Markmann JF, Raper SE, Wilson JM (2004) Transduction of human islets with pseudotyped lentiviral vectors. Hum Gene Ther 15: 211–219

    Article  PubMed  CAS  Google Scholar 

  11. Kobinger GP, Weiner DJ, Yu QC, Wilson JM (2001) Filovirus-pseudotyped lentiviral vector can efficiently and stably transduce airway epithelia in vivo. Nat Biotechnol 19:225–230

    Article  PubMed  CAS  Google Scholar 

  12. Medina MF, Kobinger GP, Rux J, Gasmi M, Looney DJ, Bates P, Wilson JM (2003) Lentiviral vectors pseudotyped with minimal filovirus envelopes increased gene transfer in murine lung. Mol Ther 8: 777–789

    Article  PubMed  CAS  Google Scholar 

  13. Sinn PL, Sauter SL, McCray PL (2005) Gene therapy progress and prospects: development of improved lentiviral and retroviral vectors-design, biosafety, and production. Gene Ther 12: 1089–1098

    Article  PubMed  CAS  Google Scholar 

  14. Otani K, Nita I, Macaulay W, Georgescu HI, Robbins PD, Evans CH (1996) Suppression of antigen-induced arthritis in rabbits by ex vivo gene therapy. J Immunol 156:3558–3562

    PubMed  CAS  Google Scholar 

  15. Makarov SS, Olsen JC, Johnston WN, Anderle SK, Brown RR, Baldwin AS, Haskill JS, Schwab JH (1996) Suppression of experimental arthritis by gene transfer of interleukin 1 receptor antagonist CDNA. Proc Natl Acad Sci USA 93: 402–406

    Article  PubMed  CAS  Google Scholar 

  16. Bakker AC, Joosten LAB, Arntz OJ, Helsen MMA, Bendele AM, Vandeloo FAJ, Vandenberg WB (1997) Prevention of murine collagen-induced arthritis in the knee and ipsilateral paw by local expression of human interleukin-1 receptor antagonist protein in the knee. Arthritis Rheum 40: 893–900

    PubMed  CAS  Google Scholar 

  17. Pelletier JP, Caron JP, Evans C, Robbins PD, Georgescu HI, Jovanovic D, Fernandes JC, Martelpelletier J (1997) In vivo suppression of early experimental osteoarthritis by interleukin-1 receptor antagonist using gene therapy. Arthritis Rheum 40: 1012–1019

    PubMed  CAS  Google Scholar 

  18. Mullerladner U, Roberts CR, Franklin BN, Gay RE, Robbins PD, Evans CH, Gay S (1997) Human IL-1RA gene transfer into human synovial fibroblasts is chondroprotective. J Immunol 158: 3492–3498

    CAS  Google Scholar 

  19. Kashyap VS, Santamarinafojo S, Brown DR, Parrott CL, Applebaumbowden D, Meyn S, Talley G, Paigen B, Maeda N, Brewer HB (1995) Apolipoprotein E deficiency in mice — gene replacement and prevention of atherosclerosis using adenovirus vectors. J Clin Invest 96: 1612–1620

    Article  PubMed  CAS  Google Scholar 

  20. Kozarsky KF, Jooss K, Donahee M, Strauss JF, Wilson JM (1996) Effective treatment of familial hypercholesterolemia in the mouse model using adenovirus-mediated transfer of the VLDL receptor gene. Nat Genet 13: 374

    Article  CAS  Google Scholar 

  21. Joosten LA, Smeets RL, Koenders MI, van den Bersselaar LA, Helsen MM, Oppers-Walgreen B, Lubberts E, Iwakura Y, van de Loo FA, van den Berg WB (2004) Interleukin-18 promotes joint inflammation and induces interleukin-1-driven cartilage destruction. Am J Pathol 165, 959–967

    PubMed  CAS  Google Scholar 

  22. Hui W, Cawston TE, Richards CD, Rowan AD (2004) A model of inflammatory arthritis highlights a role for oncostatin M in pro-inflammatory cytokine-induced bone destruction via RANK/RANKL. Arthritis Res Ther 7: R57–R64

    Article  PubMed  CAS  Google Scholar 

  23. Rowan AD, Hui W, Cawston TE, Richards CD (2003) Adenoviral gene transfer of interleukin-1 in combination with oncostatin M induces significant joint damage in a murine model. Am J Pathol 162: 1975–1984

    PubMed  CAS  Google Scholar 

  24. El Bakkouri K, Wullaert A, Haegman M, Heyninck K, Beyaert R (2005) Adenoviral gene transfer of the NF-kappa B inhibitory protein ABIN-1 decreases allergic airway inflammation in a murine asthma model. J Biol Chem 280: 17938–17944

    Article  PubMed  CAS  Google Scholar 

  25. Behera AK, Kumar M, Lockey RF, Mohapatra SS (2002) Adenovirus-mediated interferon gamma gene therapy for allergic asthma: Involvement of interleukin 12 and STAT4 signaling. Hum Gene Ther 13: 1697–1709

    Article  PubMed  CAS  Google Scholar 

  26. Stampfli MR, Cwiartka M, Gajewska BU, Alvarez D, Ritz SA, Inman MD, Xing Z, Jordana M (1999) Interleukin-10 gene transfer to the airway regulates allergic mucosal sensitization in mice. Am J Respir Cell Mol Biol 21: 586–596

    PubMed  CAS  Google Scholar 

  27. Walter DM, Wong CP, DeKruyff RH, Berry GJ, Levy S, Umetsu DT (2001) IL-18 gene transfer by adenovirus prevents the development of and reverses established allergen-induced airway hyperreactivity. J Immunol 166: 6392–6398

    PubMed  CAS  Google Scholar 

  28. Summerford C, Samulski RJ (1998) Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J Virol 72: 1438–1445

    PubMed  CAS  Google Scholar 

  29. Summerford C, Bartlett JS, Samulski RJ (1999) Alpha V beta 5 integrin: a co-receptor for adeno-associated virus type 2 infection. Nat Med 5: 78–82

    Article  PubMed  CAS  Google Scholar 

  30. Qing K, Mah C, Hansen J, Zhou SZ, Dwarki V, Srivastava A (1999) Human fibroblast growth factor receptor 1 is a co-receptor for infection by adeno-associated virus 2. Nat Med 5: 71–77

    Article  PubMed  CAS  Google Scholar 

  31. Kaludov N, Brown KE, Walters RW, Zabner J, Chiorini JA (2001) Adeno-associated virus serotype 4 (AAV4) and AAV5 both require sialic acid binding for hemagglutination and efficient transduction but differ in sialic acid linkage specificity. J Virol 75:6884–6893

    Article  PubMed  CAS  Google Scholar 

  32. Nakai H, Wu XL, Fuess S, Storm TA, Munroe D, Montini E, Burgess SM, Grompe M, Kay MA (2005) Large-scale molecular characterization of adeno-associated virus vector integration in mouse liver. J Virol 79: 3606–3614

    Article  PubMed  CAS  Google Scholar 

  33. Choi VW, McCarty DM, Samulski RJ (2005) AAV hybrid serotypes: Improved vectors for gene delivery. Curr Gene Ther 5: 299–310

    Article  PubMed  CAS  Google Scholar 

  34. Gao GP, Vandenberghe LH, Wilson JM (2005) New recombinant serotypes of AAV vectors. Curr Gene Ther 5: 285–297

    Article  PubMed  CAS  Google Scholar 

  35. Monahan PE, Samulski RJ (2000) Adeno-associated virus vectors for gene therapy: more pros than cons? Mol Med Today 6: 433–440

    Article  PubMed  CAS  Google Scholar 

  36. Watanabe S, Imagawa T, Boivin GP, Gao GP, Wilson JM, Hirsch R (2000) Adeno-associated virus mediates long-term gene transfer and delivery of chondroprotective IL-4 to murine synovium. Mol Ther 2: 147

    Article  PubMed  CAS  Google Scholar 

  37. Takahashi H, Kato K, Miyake K, Hirai Y, Yoshino S, Shimada I (2005) Adeno-associated virus vector-mediated anti-angiogenic gene therapy for collagen-induced arthritis in mice. Clin Exp Rheumatol 23: 455–461

    PubMed  CAS  Google Scholar 

  38. Zavorotinskaya T, Tomkinson A, Murphy JE (2003) Treatment of experimental asthma by long-term gene therapy directed against IL-4 and IL-13. Mol Ther 7: 155–162

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Kozarsky, K.F. (2006). Gene transfer technology. In: Stevenson, C.S., Marshall, L.A., Morgan, D.W. (eds) In Vivo Models of Inflammation. Progress in Inflammation Research. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7520-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-7643-7520-1_6

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-7643-7519-5

  • Online ISBN: 978-3-7643-7520-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics