Skip to main content

Models of inflammatory processes in cancer

  • Chapter
In Vivo Models of Inflammation

Part of the book series: Progress in Inflammation Research ((PIR))

Conclusions

A variety of models reflecting a multitude of mechanisms are bringing into focus the role of inflammation as both a driving force in carcinogenesis as well as a potential weapon to combat tumors. Further, these models now provide the basis for screening for molecules able to break to the pro-cancer chronic inflammation cycle and turn the tide against tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357(9255): 539–545

    PubMed  CAS  Google Scholar 

  2. Coussens LM, Werb Z (2001) Inflammatory cells and cancer: think different! J Exp Med 193(6): F23–26

    PubMed  CAS  Google Scholar 

  3. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420(6917): 860–867

    PubMed  CAS  Google Scholar 

  4. Balkwill F, Charles KA, Mantovani A (2005) Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 7(3): 211–217

    PubMed  CAS  Google Scholar 

  5. Avogadri F, Martinoli C, Petrovska L, Chiodoni C, Transidico P, Bronte V, Longhi R, Colombo MP, Dougan G, Rescigno M (2005) Cancer immunotherapy based on killing of Salmonella-infected tumor cells. Cancer Res 65(9): 3920–3927

    PubMed  CAS  Google Scholar 

  6. Couch M, Saunders JK, O’Malley BW, Jr., Pardoll D, Jaffee E (2003) Genetically engineered tumor cell vaccine in a head and neck cancer model. Laryngoscope 113(3):552–556

    PubMed  Google Scholar 

  7. Graf MR, Prins RM, Hawkins WT, Merchant RE (2002) Irradiated tumor cell vaccine for treatment of an established glioma. I. Successful treatment with combined radiotherapy and cellular vaccination. Cancer Immunol Immunother 51(4): 179–189

    PubMed  Google Scholar 

  8. Kusumoto M, Umeda S, Ikubo A, Aoki Y, Tawfik O, Oben R, Williamson S, Jewell W, Suzuki T (2001) Phase 1 clinical trial of irradiated autologous melanoma cells adenovirally transduced with human GM-CSF gene. Cancer Immunol Immunother 50(7):373–381

    PubMed  CAS  Google Scholar 

  9. Kutzler MA, Weiner DB (2004) Developing DNA vaccines that call to dendritic cells. J Clin Invest 114(9): 1241–1244

    PubMed  CAS  Google Scholar 

  10. Neville ME, Robb RJ, Popescu MC (2001) In situ vaccination against a non-immunogenic tumour using intratumoural injections of liposomal interleukin 2. Cytokine 16(6):239–250

    PubMed  CAS  Google Scholar 

  11. Portielje JE, Kruit WH, Eerenberg AJ, Schuler M, Sparreboom A, Lamers CH, Gratama JW, Stoter G, Huber C, Hack CE (2005) Subcutaneous injection of interleukin 12 induces systemic inflammatory responses in humans: implications for the use of IL-12 as vaccine adjuvant. Cancer Immunol Immunother 54(1): 37–43

    PubMed  CAS  Google Scholar 

  12. Wada A, Tada Y, Shimozato O, Takiguchi Y, Tatsumi K, Kuriyama T, Tagawa M (2005) Vaccination of apoptotic Fas ligand-expressing tumors decreased antitumor responses by enhanced production of immunosuppressive cytokines. AntiCancer Res 25(1A):299–303

    PubMed  CAS  Google Scholar 

  13. Moldovan L, Moldovan NI (2005) Role of monocytes and macrophages in angiogenesis. EXS (94): 127–146

    PubMed  Google Scholar 

  14. Blankenstein T (2004) The role of inflammation in tumour growth and tumour suppression. Novartis Found Symp 256: 205–210; discussion 210–214, 259–269

    PubMed  CAS  Google Scholar 

  15. Kulbe H, Levinson NR, Balkwill F, Wilson JL (2004) The chemokine network in cancer-much more than directing cell movement. Int J Dev Biol 48(5–6): 489–496

    PubMed  CAS  Google Scholar 

  16. Dvorak HF (1986) Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315(26): 1650–1659

    PubMed  CAS  Google Scholar 

  17. Benelli R, Albini A, Noonan D (2003) Neutrophils and angiogenesis: potential initiators of the angiogenic cascade. Chem Immunol Allergy 83: 167–181

    PubMed  CAS  Google Scholar 

  18. Scapini P, Morini M, Tecchio C, Minghelli S, Di Carlo E, Tanghetti E, Albini A, Lowell C, Berton G, Noonan DM, Cassatella MA (2004) CXCL1/macrophage inflammatory protein-2-induced angiogenesis in vivo is mediated by neutrophil-derived vascular endothelial growth factor-A. J Immunol 172(8): 5034–5040

    PubMed  CAS  Google Scholar 

  19. Sparmann A, Bar-Sagi D (2004) Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell 6(5): 447–458

    PubMed  CAS  Google Scholar 

  20. Karin M (2005) Inflammation and cancer: the long reach of Ras. Nat Med 11(1): 20–21

    PubMed  CAS  Google Scholar 

  21. Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2(3): 161–174

    PubMed  CAS  Google Scholar 

  22. Hayashido Y, Urabe K, Yoshioka Y, Kitano H, Okamoto T, Matsuya T (2003) Participation of fibroblasts in MMP-2 binding and activation on the surface of oral squamous cell carcinoma cells. Int J Oncol 22(3): 657–662

    PubMed  CAS  Google Scholar 

  23. Boyd RS, Balkwill FR (1999) MMP-2 release and activation in ovarian carcinoma: the role of fibroblasts. Br J Cancer 80(3–4): 315–321

    PubMed  CAS  Google Scholar 

  24. Gunther K, Leier J, Henning G, Dimmler A, Weissbach R, Hohenberger W, Forster R (2005) Prediction of lymph node metastasis in colorectal carcinoma by expression of chemokine receptor CCR7. Int J Cancer 116(5): 726–733

    PubMed  Google Scholar 

  25. Strieter RM, Belperio JA, Phillips RJ, Keane MP (2004) Chemokines: angiogenesis and metastases in lung cancer. Novartis Found Symp 256: 173–184; discussion 184–188, 259–269

    PubMed  CAS  Google Scholar 

  26. Wang J, Xi L, Gooding W, Godfrey TE, Ferris RL (2005) Chemokine receptors 6 and 7 identify a metastatic expression pattern in squamous cell carcinoma of the head and neck. Adv Otorhinolaryngol 62: 121–133

    PubMed  CAS  Google Scholar 

  27. Pollard JW (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4(1): 71–78

    PubMed  CAS  Google Scholar 

  28. Brigati C, Noonan DM, Albini A, Benelli R (2002) Tumors and inflammatory infiltrates: friends or foes? Clin Exp Metastasis 19(3): 247–258

    PubMed  CAS  Google Scholar 

  29. Harmey JH, Bucana CD, Lu W, Byrne AM, McDonnell S, Lynch C, Bouchier-Hayes D, Dong Z (2002) Lipopolysaccharide-induced metastatic growth is associated with increased angiogenesis, vascular permeability and tumor cell invasion. Int J Cancer 101(5): 415–422

    PubMed  CAS  Google Scholar 

  30. Clark DA, Coker R (1998) Transforming growth factor-beta (TGF-beta). Int J Biochem Cell Biol 30(3): 293–298

    PubMed  CAS  Google Scholar 

  31. Gold LI (1999) The role for transforming growth factor-beta (TGF-beta) in human cancer. Crit Rev Oncog 10(4): 303–360

    PubMed  CAS  Google Scholar 

  32. Engle SJ, Hoying JB, Boivin GP, Ormsby I, Gartside PS, Doetschman T (1999) Transforming growth factor beta1 suppresses nonmetastatic colon cancer at an early stage of tumorigenesis. Cancer Res 159(14): 3379–3386

    Google Scholar 

  33. Li F, Cao Y, Townsend CM, Jr, Ko TC (2005) TGF-beta signaling in colon cancer cells. World J Surg 29(3): 306–311

    PubMed  Google Scholar 

  34. Engle SJ, Ormsby I, Pawlowski S, Boivin GP, Croft J, Balish E, Doetschman T (2002) Elimination of colon cancer in germ-free transforming growth factor beta 1-deficient mice. Cancer Res 62(22): 6362–6366

    PubMed  CAS  Google Scholar 

  35. Berg DJ, Davidson N, Kuhn R, Muller W, Menon S, Holland G, Thompson-Snipes L, Leach MW, Rennick D (1996) Enterocolitis and colon cancer in interleukin-10-deficient mice are associated with aberrant cytokine production and CD4(+) TH1-like responses. J Clin Invest 98(4): 1010–1020

    PubMed  CAS  Google Scholar 

  36. Suzuki R, Kohno H, Sugie S, Tanaka T (2004) Sequential observations on the occurrence of preneoplastic and neoplastic lesions in mouse colon treated with azoxymethane and dextran sodium sulfate. Cancer Sci 95(9): 721–727

    PubMed  CAS  Google Scholar 

  37. Suzuki R, Kohno H, Sugie S, Tanaka T (2005) Dose-dependent promoting effect of dextran sodium sulfate on mouse colon carcinogenesis initiated with azoxymethane. Histol Histopathol 20(2): 483–492

    PubMed  CAS  Google Scholar 

  38. Andres PG, Beck PL, Mizoguchi E, Mizoguchi A, Bhan AK, Dawson T, Kuziel WA, Maeda N, MacDermott RP, Podolsky DK, Reinecker HC (2000) Mice with a selective deletion of the CC chemokine receptors 5 or 2 are protected from dextran sodium sulfate-mediated colitis: lack of CC chemokine receptor 5 expression results in a NK1.1+ lymphocyte-associated Th2-type immune response in the intestine. J Immunol 164(12):6303–6312

    PubMed  CAS  Google Scholar 

  39. Tokuyama H, Ueha S, Kurachi M, Matsushima K, Moriyasu F, Blumberg RS, Kakimi K (2005) The simultaneous blockade of chemokine receptors CCR2, CCR5 and CXCR3 by a non-peptide chemokine receptor antagonist protects mice from dextran sodium sulfate-mediated colitis. Int Immunol 17(8):1023–1034

    PubMed  CAS  Google Scholar 

  40. Folkman J (2002) Role of angiogenesis in tumor growth and metastasis. Semin Oncol 29(6 Suppl 16): 15–18

    PubMed  CAS  Google Scholar 

  41. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1): 57–70

    PubMed  CAS  Google Scholar 

  42. Cassatella MA, Gasperini S, Russo MP (1997) Cytokine expression and release by neutrophils. Ann NY Acad Sci 832: 233–242

    PubMed  CAS  Google Scholar 

  43. Scapini P, Lapinet-Vera JA, Gasperini S, Calzetti F, Bazzoni F, Cassatella MA (2000) The neutrophil as a cellular source of chemokines. Immunol Rev 177: 195–203

    PubMed  CAS  Google Scholar 

  44. Ellis LM (2005) Bevacizumab. Nat Rev Drug Discov (Suppl): S8–9

    PubMed  Google Scholar 

  45. Turini ME, DuBois RN (2002) Cyclooxygenase-2: a therapeutic target. Annu Rev Med 53: 35–57

    PubMed  CAS  Google Scholar 

  46. Albini A, Noonan DM (2005) Rescuing COX-2 inhibitors from the waste bin. J Natl Cancer Inst 97(11): 859–860

    PubMed  CAS  Google Scholar 

  47. Benelli R, Albini A (1999) In vitro models of angiogenesis: the use of Matrigel. Int J Biol Markers 14(4): 243–246

    PubMed  CAS  Google Scholar 

  48. Winkler JD, Seed MP (1997) Angiogenesis in inflammatory disease. Inflamm Res 46(5):157–158

    PubMed  CAS  Google Scholar 

  49. Winkler JD, Jackson JR, Fan TP, Seed MP (2004) Angiogenesis. Birkhäuser, Basel

    Google Scholar 

  50. Nguyen M, Shing Y, Folkman J (1994) Quantitation of angiogenesis and antiangiogenesis in the chick embryo chorioallantoic membrane. Microvasc Res 47(1): 31–40

    PubMed  CAS  Google Scholar 

  51. Peek MJ, Norman TM, Morgan C, Markham R, Fraser IS (1988) The chick chorioallantoic membrane assay: an improved technique for the study of angiogenic activity. Exp Pathol 34(1): 35–40

    PubMed  CAS  Google Scholar 

  52. Albini A, Fontanini G, Masiello L, Tacchetti C, Bigini D, Luzzi P, Noonan DM, Stetler-Stevenson WG (1994) Angiogenic potential in vivo by Kaposi’s sarcoma cell-free supernatants and HIV-1 tat product: inhibition of KS-like lesions by tissue inhibitor of metalloproteinase-2. AIDS 8(9): 1237–1944

    PubMed  CAS  Google Scholar 

  53. Passaniti A, Taylor RM, Pili R, Guo Y, Long PV, Haney JA, Pauly RR, Grant DS, Martin GR (1992) A simple, quantitative method for assessing angiogenesis and antiangiogenic agents using reconstituted basement membrane, heparin, and fibroblast growth factor. Lab Invest 67(4): 519–528

    PubMed  CAS  Google Scholar 

  54. Benelli R, Morini M, Carrozzino F, Ferrari N, Minghelli S, Santi L, Cassatella M, Noonan DM, Albini A (2002) Neutrophils as a key cellular target for angiostatin: implications for regulation of angiogenesis and inflammation. FASEB J 16(2): 267–269

    PubMed  CAS  Google Scholar 

  55. Benelli R, Vene R, Bisacchi D, Garbisa S, Albini A (2002) Anti-invasive effects of green tea polyphenol epigallocatechin-3-gallate (EGCG), a natural inhibitor of metallo and serine proteases. Biol Chem 383(1): 101–105

    PubMed  CAS  Google Scholar 

  56. Dona M, Dell’Aica I, Calabrese F, Benelli R, Morini M, Albini A, Garbisa S (2003) Neutrophil restraint by green tea: inhibition of inflammation, associated angiogenesis, and pulmonary fibrosis. J Immunol 170(8): 4335–4341

    PubMed  CAS  Google Scholar 

  57. Kenyon BM, Voest EE, Chen CC, Flynn E, Folkman J, D’Amato RJ (1996) A model of angiogenesis in the mouse cornea. Invest Ophthalmol Vis Sci 37(8): 1625–1632

    PubMed  CAS  Google Scholar 

  58. Ryu S, Albert DM (1979) Evaluation of tumor angiogenesis factor with the rabbit cornea model. Invest Ophthalmol Vis Sci 18(8): 831–841

    PubMed  CAS  Google Scholar 

  59. Sunderkotter C, Beil W, Roth J, Sorg C (1991) Cellular events associated with inflammatory angiogenesis in the mouse cornea. Am J Pathol 138(4): 931–939

    PubMed  CAS  Google Scholar 

  60. Hernandez-Pando R, De La Luz Streber M, Orozco H, Arriaga K, Pavon L, Al-Nakhli SA, Rook GA (1998) The effects of androstenediol and dehydroepiandrosterone on the course and cytokine profile of tuberculosis in BALB/c mice. Immunology 95(2):234–241

    PubMed  CAS  Google Scholar 

  61. Hogaboam CM, Chensue SW, Steinhauser ML, Huffnagle GB, Lukacs NW, Strieter RM, Kunkel SL (1997) Alteration of the cytokine phenotype in an experimental lung granuloma model by inhibiting nitric oxide. J Immunol 159(11): 5585–5593

    PubMed  CAS  Google Scholar 

  62. Frydas S, Papazahariadou M, Papaioannou N, Hatzistilianou M, Trakatellis M, Merlitti D, Di Gioacchino M, Grilli A, DeLutiis MA, Riccioni G et al (2003) Effect of the compound L-mimosine in an in vivo model of chronic granuloma formation induced by potassium permanganate (KMNO4). Int J Immunopathol Pharmacol 16(2): 99–104

    PubMed  CAS  Google Scholar 

  63. Okada F, Kawaguchi T, Habelhah H, Kobayashi T, Tazawa H, Takeichi N, Kitagawa T, Hosokawa M (2000) Conversion of human colonic adenoma cells to adenocarcinoma cells through inflammation in nude mice. Lab Invest 80(11): 1617–1628

    PubMed  CAS  Google Scholar 

  64. Rovere-Querini P, Capobianco A, Scaffidi P, Valentinis B, Catalanotti F, Giazzon M, Dumitriu IE, Muller S, Iannacone M, Traversari C et al (2004) HMGB1 is an endogenous immune adjuvant released by necrotic cells. EMBO Rep 5(8): 825–830

    PubMed  CAS  Google Scholar 

  65. Sheikh AY, Rollins MD, Hopf HW, Hunt TK (2005) Hyperoxia improves microvascular perfusion in a murine wound model. Wound Repair Regen 13(3): 303–308

    PubMed  Google Scholar 

  66. Lees VC, Fan TP (1994) A freeze-injured skin graft model for the quantitative study of basic fibroblast growth factor and other promoters of angiogenesis in wound healing. Br J Plast Surg 47(5): 349–359

    PubMed  CAS  Google Scholar 

  67. Altavilla D, Galeano M, Bitto A, Minutoli L, Squadrito G, Seminara P, Venuti FS, Torre V, Calo M, Colonna M et al (2005) Lipid peroxidation inhibition by raxofelast improves angiogenesis and wound healing in experimental burn wounds. Shock 24(1): 85–91

    PubMed  CAS  Google Scholar 

  68. Ciancio SJ, Coburn M, Hornsby PJ (2000) Cutaneous window for in vivo observations of organs and angiogenesis. J Surg Res 92(2): 228–232

    PubMed  CAS  Google Scholar 

  69. Tettamanti G, Grimaldi A, Rinaldi L, Arnaboldi F, Congiu T, Valvassori R, de Eguileor M (2004) The multifunctional role of fibroblasts during wound healing in Hirudo medicinalis (Annelida, Hirudinea). Biol Cell 96(6): 443–455

    PubMed  CAS  Google Scholar 

  70. Tettamanti G, Grimaldi A, Congiu T, Perletti G, Raspanti M, Valvassori R, de Eguileor M (2005) Collagen reorganization in leech wound healing. Biol Cell 97(7): 557–568

    PubMed  CAS  Google Scholar 

  71. de Eguileor M, Tettamanti G, Grimaldi A, Perletti G, Congiu T, Rinaldi L, Valvassori R (2004) Hirudo medicinalis: avascular tissues for clear-cut angiogenesis studies? Curr Pharm Des 10(16): 1979–1988

    PubMed  Google Scholar 

  72. Tettamanti G, Grimaldi A, Valvassori R, Rinaldi L, de Eguileor M (2003) Vascular endothelial growth factor is involved in neoangiogenesis in Hirudo medicinalis (Annelida, Hirudinea). Cytokine 22(6): 168–179

    PubMed  CAS  Google Scholar 

  73. de Eguileor M, Tettamanti G, Grimaldi A, Congiu T, Ferrarese R, Perletti G, Valvassori R, Cooper EL, Lanzavecchia G (2003) Leeches: immune response, angiogenesis and biomedical applications. Curr Pharm Des 9(2): 133–147

    PubMed  Google Scholar 

  74. de Eguileor M, Grimaldi A, Tettamanti G, Ferrarese R, Congiu T, Protasoni M, Perletti G, Valvassori R, Lanzavecchia G (2001) Hirudo medicinalis: a new model for testing activators and inhibitors of angiogenesis. Angiogenesis 4(4): 299–312

    PubMed  Google Scholar 

  75. Bendall L (2005) Chemokines and their receptors in disease. Histol Histopathol 20(3): 907–926

    PubMed  CAS  Google Scholar 

  76. Coelho AL, Hogaboam CM, Kunkel SL (2005) Chemokines provide the sustained inflammatory bridge between innate and acquired immunity. Cytokine Growth Factor Rev 16(6): 553–560

    PubMed  CAS  Google Scholar 

  77. Kim CH (2005) The greater chemotactic network for lymphocyte trafficking: chemokines and beyond. Curr Opin Hematol 12(4): 298–304

    PubMed  CAS  Google Scholar 

  78. Gerard C, Rollins BJ (2001) Chemokines and disease. Nat Immunol 2(2): 108–115

    PubMed  CAS  Google Scholar 

  79. Nesbit M, Schaider H, Miller TH, Herlyn M (2001) Low-level monocyte chemoattractant protein-1 stimulation of monocytes leads to tumor formation in nontumorigenic melanoma cells. J Immunol 166(11): 6483–6490

    PubMed  CAS  Google Scholar 

  80. Salcedo R, Ponce ML, Young HA, Wasserman K, Ward JM, Kleinman HK, Oppenheim JJ, Murphy WJ (2000) Human endothelial cells express CCR2 and respond to MCP-1: direct role of MCP-1 in angiogenesis and tumor progression. Blood 96(1): 34–40

    PubMed  CAS  Google Scholar 

  81. Strieter RM, Belperio JA, Phillips RJ, Keane MP (2004) CXC chemokines in angiogenesis of cancer. Semin Cancer Biol 14(3): 195–200

    PubMed  CAS  Google Scholar 

  82. Schaider H, Oka M, Bogenrieder T, Nesbit M, Satyamoorthy K, Berking C, Matsushima K, Herlyn M (2003) Differential response of primary and metastatic melanomas to neutrophils attracted by IL-8. Int J Cancer 103(3): 335–343

    PubMed  CAS  Google Scholar 

  83. van Deventer HW, O’Connor W Jr, Brickey WJ, Aris RM, Ting JP, Serody JS (2005) CC chemokine receptor 5 on stromal cells promotes pulmonary metastasis. Cancer Res 65(8): 3374–3379

    PubMed  Google Scholar 

  84. Ambati BK, Anand A, Joussen AM, Kuziel WA, Adamis AP, Ambati J (2003) Sustained inhibition of corneal neovascularization by genetic ablation of CCR5. Invest Ophthalmol Vis Sci 44(2): 590–593

    PubMed  Google Scholar 

  85. Coussens LM, Raymond WW, Bergers G, Laig-Webster M, Behrendtsen O, Werb Z, Caughey GH, Hanahan D (1999) Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev 13(11): 1382–1397

    PubMed  CAS  Google Scholar 

  86. Daniel D, Meyer-Morse N, Bergsland EK, Dehne K, Coussens LM, Hanahan D (2003) Immune enhancement of skin carcinogenesis by CD4+ T cells. J Exp Med 197(8): 1017–1028

    PubMed  CAS  Google Scholar 

  87. de Visser KE, Korets LV, Coussens LM (2005) De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell 7(5): 411–423

    PubMed  Google Scholar 

  88. Mantovani A, Ming WJ, Balotta C, Abdeljalil B, Bottazzi B (1986) Origin and regulation of tumor-associated macrophages: the role of tumor-derived chemotactic factor. Biochim Biophys Acta 865(1): 59–67

    PubMed  CAS  Google Scholar 

  89. Otsuji M, Kimura Y, Aoe T, Okamoto Y, Saito T (1996) Oxidative stress by tumorderived macrophages suppresses the expression of CD3 zeta chain of T-cell receptor complex and antigen-specific T-cell responses. Proc Natl Acad Sci USA 93(23): 13119–13124

    PubMed  CAS  Google Scholar 

  90. Lewis CE, Leek R, Harris A, McGee JO (1995) Cytokine regulation of angiogenesis in breast cancer: the role of tumor-associated macrophages. J Leukoc Biol 57(5): 747–751

    PubMed  CAS  Google Scholar 

  91. Yu JL, Rak JW (2003) Host microenvironment in breast cancer development: inflammatory and immune cells in tumour angiogenesis and arteriogenesis. Breast Cancer Res 5(2): 83–88

    PubMed  CAS  Google Scholar 

  92. Chen JJ, Lin YC, Yao PL, Yuan A, Chen HY, Shun CT, Tsai MF, Chen CH, Yang PC (2005) Tumor-associated macrophages: the double-edged sword in cancer progression. J Clin Oncol 23(5): 953–964

    PubMed  CAS  Google Scholar 

  93. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25(12): 677–686

    PubMed  CAS  Google Scholar 

  94. Sica A, Saccani A, Bottazzi B, Polentarutti N, Vecchi A, van Damme J, Mantovani A (2000) Autocrine production of IL-10 mediates defective IL-12 production and NFkappa B activation in tumor-associated macrophages. J Immunol 164(2): 762–767

    PubMed  CAS  Google Scholar 

  95. Schmielau J, Finn OJ (2001) Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of T-cell function in advanced cancer patients. Cancer Res 61(12): 4756–4760

    PubMed  CAS  Google Scholar 

  96. Munder M, Mollinedo F, Calafat J, Canchado J, Gil-Lamaignere C, Fuentes JM, Luckner C, Doschko G, Soler G, Eichmann K et al (2005) Arginase I is constitutively expressed in human granulocytes and participates in fungicidal activity. Blood 105(6): 2549–2556

    PubMed  CAS  Google Scholar 

  97. Zea AH, Rodriguez PC, Atkins MB, Hernandez C, Signoretti S, Zabaleta J, McDermott D, Quiceno D, Youmans A, O’Neill A et al (2005) Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer Res 65(8): 3044–3048

    PubMed  CAS  Google Scholar 

  98. Bronte V, Serafini P, De Santo C, Marigo I, Tosello V, Mazzoni A, Segal DM, Staib C, Lowel M, Sutter G et al (2003) IL-4-induced arginase 1 suppresses alloreactive T cells in tumor-bearing mice. J Immunol 170(1): 270–278

    PubMed  CAS  Google Scholar 

  99. Zea AH, Rodriguez PC, Culotta KS, Hernandez CP, DeSalvo J, Ochoa JB, Park HJ, Zabaleta J, Ochoa AC (2004) L-Arginine modulates CD3zeta expression and T cell function in activated human T lymphocytes. Cell Immunol 232(1–2):21–31

    PubMed  CAS  Google Scholar 

  100. Dvorak AM, Morgan ES, Tzizik DM, Weller PF (1994) Prostaglandin endoperoxide synthase (cyclooxygenase): ultrastructural localization to nonmembrane-bound cytoplasmic lipid bodies in human eosinophils and 3T3 fibroblasts. Int Arch Allergy Immunol 105(3): 245–250

    PubMed  CAS  Google Scholar 

  101. Sousa A, Pfister R, Christie PE, Lane SJ, Nasser SM, Schmitz-Schumann M, Lee TH (1997) Enhanced expression of cyclo-oxygenase isoenzyme 2 (COX-2) in asthmatic airways and its cellular distribution in aspirin-sensitive asthma. Thorax 52(11): 940–945

    PubMed  CAS  Google Scholar 

  102. Akasaki Y, Liu G, Chung NH, Ehtesham M, Black KL, Yu JS (2004) Induction of a CD4+ T regulatory type 1 response by cyclooxygenase-2-overexpressing glioma. J Immunol 173(7): 4352–4359

    PubMed  CAS  Google Scholar 

  103. Munn DH, Shafizadeh E, Attwood JT, Bondarev I, Pashine A, Mellor AL (1999) Inhibition of T cell proliferation by macrophage tryptophan catabolism. J Exp Med 189(9): 1363–1372

    PubMed  CAS  Google Scholar 

  104. Odemuyiwa SO, Ghahary A, Li Y, Puttagunta L, Lee JE, Musat-Marcu S, Ghahary A, Moqbel R (2004) Cutting edge: human eosinophils regulate T cell subset selection through indoleamine 2,3-dioxygenase. J Immunol 173(10): 5909–5913

    PubMed  CAS  Google Scholar 

  105. Ratto GB, Zino P, Mirabelli S, Minuti P, Aquilina R, Fantino G, Spessa E, Ponte M, Bruzzi P, Melioli G (1996) A randomized trial of adoptive immunotherapy with tumorinfiltrating lymphocytes and interleukin-2 versus standard therapy in the postoperative treatment of resected nonsmall cell lung carcinoma. Cancer 78(2): 244–251

    PubMed  CAS  Google Scholar 

  106. Sakaguchi S, Sakaguchi N, Shimizu J, Yamazaki S, Sakihama T, Itoh M, Kuniyasu Y, Nomura T, Toda M, Takahashi T (2001) Immunologic tolerance maintained by CD25+ CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol Rev 182: 18–32

    PubMed  CAS  Google Scholar 

  107. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10(9): 942–949

    PubMed  CAS  Google Scholar 

  108. Kosaka T, Kuwabara M, Endo A, Tamaguchi H, Koide F (1991) Expression of arginase by mouse myeloid leukemic cell differentiation in vitro induced with tumor necrosis factor. J Vet Med Sci 53(1): 53–57

    PubMed  CAS  Google Scholar 

  109. Kusmartsev S, Nefedova Y, Yoder D, Gabrilovich DI (2004) Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. J Immunol 172(2): 989–999

    PubMed  CAS  Google Scholar 

  110. Bozza S, Fallarino F, Pitzurra L, Zelante T, Montagnoli C, Bellocchio S, Mosci P, Vacca C, Puccetti P, Romani L (2005) A crucial role for tryptophan catabolism at the host/Candida albicans interface. J Immunol 174(5): 2910–2908

    PubMed  CAS  Google Scholar 

  111. Thomas SR, Mohr D, Stocker R (1994) Nitric oxide inhibits indoleamine 2,3-dioxygenase activity in interferon-gamma primed mononuclear phagocytes. J Biol Chem 269(20): 14457–14464

    PubMed  CAS  Google Scholar 

  112. Rodriguez PC, Zea AH, DeSalvo J, Culotta KS, Zabaleta J, Quiceno DG, Ochoa JB, Ochoa AC (2003) L-Arginine consumption by macrophages modulates the expression of CD3 zeta chain in T lymphocytes. J Immunol 171(3): 1232–1239

    PubMed  CAS  Google Scholar 

  113. Huang MH, Yu CL, Han SH, Chiang BN, Wang SR (1990) Evidence that an immunosuppressive protein from murine liver is arginase. Biomed Biochim Acta 49(4): 179–187

    PubMed  CAS  Google Scholar 

  114. Takikawa O, Kuroiwa T, Yamazaki F, Kido R (1988) Mechanism of interferon-gamma action. Characterization of indoleamine 2,3-dioxygenase in cultured human cells induced by interferon-gamma and evaluation of the enzyme-mediated tryptophan degradation in its anticellular activity. J Biol Chem 263(4): 2041–2048

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Benelli, R., Frumento, G., Albini, A., Noonan, D.M. (2006). Models of inflammatory processes in cancer. In: Stevenson, C.S., Marshall, L.A., Morgan, D.W. (eds) In Vivo Models of Inflammation. Progress in Inflammation Research. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7520-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7643-7520-1_4

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-7643-7519-5

  • Online ISBN: 978-3-7643-7520-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics