Skip to main content

Chemokines in allergic responses: eosinophils, basophils, mast cells

  • Chapter
Chemokine Biology — Basic Research and Clinical Application

Part of the book series: Progress in Inflammation Research ((PIR))

  • 687 Accesses

Abstract

Eosinophils, basophils and mast cells play key roles in the allergic response. These cells are cellular members of the innate immune system and contain granules with a variety of potent biological mediators. Mast cells are tissue bound and positioned near epithelial surfaces and as such can respond quickly to tissue injury, parasites and allergens by releasing the content of their granules. Eosinophils and basophils circulate within the blood stream and traffic to sites of tissue damage and parasite/allergen exposure. They too release potent biological mediators upon activation. The activation of mast cells, eosinophils and basophils and the subsequent release of their granules lead to many of the phenotypic features observed in the allergic response, such as vasodilatation and tissue edema.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hakansson L, Rak S, Dahl R, Venge P (1989) The formation of eosinophil and neutrophil chemotactic activity during a pollen season and after allergen challenge. J Allergy Clin Immunol 83(5): 933–939

    Article  PubMed  CAS  Google Scholar 

  2. Brown JR, Kleimberg J, Marini M, Sun G, Bellini A, Mattoli S (1998) Kinetics of eotaxin expression and its relationship to eosinophil accumulation and activation in bronchial biopsies and bronchoalveolar lavage (BAL) of asthmatic patients after allergen inhalation. Clin Exp Immunol 114(2): 137–146

    Article  PubMed  CAS  Google Scholar 

  3. Rojas-Ramos E, Avalos AF, Perez-Fernandez L, Cuevas-Schacht F, Valencia-Maqueda E, Teran LM (2003) Role of the chemokines RANTES, monocyte chemotactic proteins-3 and-4, and eotaxins-1 and-2 in childhood asthma. Eur Respir J 22(2): 310–316

    Article  PubMed  CAS  Google Scholar 

  4. Liu LY, Jarjour NN, Busse WW, Kelly EA (2003) Chemokine receptor expression on human eosinophils from peripheral blood and bronchoalveolar lavage fluid after segmental antigen challenge. J Allergy Clin Immunol 112(3): 556–562

    Article  PubMed  Google Scholar 

  5. Borchers MT, Ansay T, DeSalle R, Daugherty BL, Shen H, Metzger M, Lee NA, Lee JJ (2002) In vitro assessment of chemokine receptor-ligand interactions mediating mouse eosinophil migration. J Leukoc Biol 71(6): 1033–1041

    PubMed  CAS  Google Scholar 

  6. Dunzendorfer S, Kaneider NC, Kaser A, Woell E, Frade JM, Mellado M, Martinez-Alonso C, Wiedermann CJ (2001) Functional expression of chemokine receptor 2 by normal human eosinophils. J Allergy Clin Immunol 108(4): 581–587

    Article  PubMed  CAS  Google Scholar 

  7. Oliveira SH, Lukacs NW (2001) Stem cell factor and igE-stimulated murine mast cells produce chemokines (CCL2, CCL17, CCL22) and express chemokine receptors. Inflamm Res 50(3): 168–174

    Article  PubMed  CAS  Google Scholar 

  8. Uguccioni M, Mackay CR, Ochensberger B, Loetscher P, Rhis S, LaRosa GJ, Rao P, Ponath PD, Baggiolini M, Dahinden CA (1997) High expression of the chemokine receptor CCR3 in human blood basophils. Role in activation by eotaxin, MCP-4, and other chemokines. J Clin Invest 100(5): 1137–1143

    PubMed  CAS  Google Scholar 

  9. Ochensberger B, Tassera L, Bifrare D, Rihs S, Dahinden CA (1999) Regulation of cytokine expression and leukotriene formation in human basophils by growth factors, chemokines and chemotactic agonists. Eur J Immunol 29(1): 11–22

    Article  PubMed  CAS  Google Scholar 

  10. Mathew A, MacLean JA, DeHaan E, Tager AM, Green FH, Luster AD (2001) Signal transducer and activator of transcription 6 controls chemokine production and T helper cell type 2 cell trafficking in allergic pulmonary inflammation. J Exp Med 193(9): 1087–1096

    Article  PubMed  CAS  Google Scholar 

  11. Luster AD (2001) Antichemokine immunotherapy for allergic diseases. Curr Opin Allergy Clin Immunol 1(6): 561–567

    Article  PubMed  CAS  Google Scholar 

  12. Lundahl J, Moshfegh A, Gronneberg R, Hallden G (1998) Eotaxin increases the expression of CD11b/CD18 and adhesion properties in IL5, but not fMLP-prestimulated human peripheral blood eosinophils. Inflammation 22(2): 123–135

    Article  PubMed  CAS  Google Scholar 

  13. Burke-Gaffney A, Hellewell PG (1998) A CD18/ICAM-1-dependent pathway mediates eosinophil adhesion to human bronchial epithelial cells. Am J Respir Cell Mol Biol 19(3): 408–418

    PubMed  CAS  Google Scholar 

  14. Nagata M, Yamamoto H, Tabe K, Sakamoto Y (2001) Eosinophil transmigration across VCAM-1-expressing endothelial cells is upregulated by antigen-stimulated mononuclear cells. Int Arch Allergy Immunol 125(Suppl 1): 7–11

    Article  PubMed  CAS  Google Scholar 

  15. Bandeira-Melo C, Weller PF (2003) Eosinophils and cysteinyl leukotrienes. Prostaglandins Leukot Essent Fatty Acids 69(2–3): 135–143

    Article  PubMed  CAS  Google Scholar 

  16. Nagata M, Saito K (2003) The roles of cysteinyl leukotrienes in eosinophilic inflammation of asthmatic airways. Int Arch Allergy Immunol 131(Suppl 1): 7–10

    Article  PubMed  CAS  Google Scholar 

  17. Costa JJ, Matossian K, Resnick MB, Beil WJ, Wong DT, Gordon JR, Dvorak AM, Weller PF, Galli SJ (1993) Human eosinophils can express the cytokines tumor necrosis factor-alpha and macrophage inflammatory protein-1 alpha. J Clin Invest 91(6): 2673–2684

    PubMed  CAS  Google Scholar 

  18. Nakajima T, Yamada H, Iikura M, Miyamasu M, Izumi S, Shida H, Ohta K, Imai T, Yoshie O, Mochizuki M et al (1998) Intracellular localization and release of eotaxin from normal eosinophils. FEBS Lett 434(3): 226–230

    Article  PubMed  CAS  Google Scholar 

  19. Izumi S, Hirai K, Miyamasu M, Takahashi Y, Misaki Y, Takaishi T, Morita Y, Matsushima K, Ida N, Nakamura H et al (1997) Expression and regulation of monocyte chemoattractant protein-1 by human eosinophils. Eur J Immunol 27(4): 816–824

    Article  PubMed  CAS  Google Scholar 

  20. Oliveira SH, Taub DD, Nagel J, Smith R, Hogaboam CM, Berlin A, Lukacs NW (2002) Stem cell factor induces eosinophil activation and degranulation: mediator release and gene array analysis. Blood 100(13): 4291–4297

    Article  PubMed  CAS  Google Scholar 

  21. Li H, Sim TC, Grant JA, Alam R (1996) The production of macrophage inflammatory protein-1 alpha by human basophils. J Immunol 157(3): 1207–1212

    PubMed  CAS  Google Scholar 

  22. Holgate ST (2000) The role of mast cells and basophils in inflammation. Clin Exp Allergy 30(Suppl 1): 28–32

    Article  PubMed  Google Scholar 

  23. Lamkhioued B, Garcia-Zepeda EA, Abi-Younes S, Nakamura H, Jedrzkiewicz S, Wagner L, Renzi PM, Allakhverdi Z, Lilly C, Hamid Q et al (2000) Monocyte chemoattractant protein (MCP)-4 expression in the airways of patients with asthma. Induction in epithelial cells and mononuclear cells by proinflammatory cytokines. Am J Respir Crit Care Med 162(2 Pt 1): 723–732

    PubMed  CAS  Google Scholar 

  24. Jedrzkiewicz S, Nakamura H, Silverman ES, Luster AD, Mansharamani N, In KH, Tamura G, Lilly CM (2000) IL-1beta induces eotaxin gene transcription in A549 airway epithelial cells through NF-kappaB. Am J Physiol Lung Cell Mol Physiol 279(6): L1058–1065

    PubMed  CAS  Google Scholar 

  25. Singer CA, Salinthone S, Baker KJ, Gerthoffer WT (2004) Synthesis of immune modulators by smooth muscles. Bioessays 26(6): 646–655

    Article  PubMed  CAS  Google Scholar 

  26. Ghaffar O, Hamid Q, Renzi PM, Allakhverdi Z, Molet S, Hogg JC, Shore SA, Luster AD, Lamkhioued B (1999) Constitutive and cytokine-stimulated expression of eotaxin by human airway smooth muscle cells. Am J Respir Crit Care Med 159(6): 1933–1942

    PubMed  CAS  Google Scholar 

  27. Kameyoshi Y, Dorschner A, Mallet AI, Christophers E, Schroder JM (1992) Cytokine RANTES released by thrombin-stimulated platelets is a potent attractant for human eosinophils. J Exp Med 176(2): 587–592

    Article  PubMed  CAS  Google Scholar 

  28. Wenzel SE, Trudeau JB, Barnes S, Zhou X, Cundall M, Westcott JY, McCord K, Chu HW (2002) TGF-beta and IL-13 synergistically increase eotaxin-1 production in human airway fibroblasts. J Immunol 169(8): 4613–4619

    PubMed  CAS  Google Scholar 

  29. Maruo K, Akaike T, Ono T, Okamoto T, Maeda H (1997) Generation of anaphylatoxins through proteolytic processing of C3 and C5 by house dust mite protease. J Allergy Clin Immunol 100(2): 253–260

    Article  PubMed  CAS  Google Scholar 

  30. Washburn RG, Bryant-Varela BJ, Julian NC, Bennett JE (1991) Differences in Cryptococcus neoformans capsular polysaccharide structure influence assembly of alternative complement pathway C3 convertase on fungal surfaces. Mol Immunol 28(4–5): 465–470

    Article  PubMed  CAS  Google Scholar 

  31. Nilsson G, Johnell M, Hammer CH, Tiffany HL, Nilsson K, Metcalfe DD, Siegbahn A, Murphy PM (1996) C3a and C5a are chemotaxins for human mast cells and act through distinct receptors via a pertussis toxin-sensitive signal transduction pathway. J Immunol 157(4): 1693–1698

    PubMed  CAS  Google Scholar 

  32. Okumura S, Kashiwakura J, Tomita H, Matsumoto K, Nakajima T, Saito H, Okayama Y (2003) Identification of specific gene expression profiles in human mast cells mediated by Toll-like receptor 4 and FcepsilonRI. Blood 102(7): 2547–2554

    Article  PubMed  CAS  Google Scholar 

  33. Selvan RS, Butterfield JH, Krangel MS (1994) Expression of multiple chemokine genes by a human mast cell leukemia. J Biol Chem 269(19): 13893–13898

    PubMed  CAS  Google Scholar 

  34. Supajatura V, Ushio H, Nakao A, Akira S, Okumura K, Ra C, Ogawa H (2002) Differential responses of mast cell Toll-like receptors 2 and 4 in allergy and innate immunity. J Clin Invest 109(10):1351–1359

    Article  PubMed  CAS  Google Scholar 

  35. Eisenbarth SC, Piggott DA, Huleatt JW, Visintin I, Herrick CA, Bottomly K (2002) Lipopolysaccharide-enhanced, toll-like receptor 4-dependent T helper cell type 2 responses to inhaled antigen. J Exp Med 196(12): 1645–1651

    Article  PubMed  CAS  Google Scholar 

  36. Bieneman AP, Chichester KL, Chen YH, Schroeder JT (2005) Toll-like receptor 2 ligands activate human basophils for both IgE-dependent and IgE-independent secretion. J Allergy Clin Immunol 115(2): 295–301

    Article  PubMed  CAS  Google Scholar 

  37. Shinkai K, Mohrs M, Locksley RM (2002) Helper T cells regulate type-2 innate immunity in vivo. Nature 420: 825–829

    Article  PubMed  CAS  Google Scholar 

  38. Sherman MA, Secor VH, Lee SK, Lopez RD, Brown MA (1999) STAT6-independent production of IL-4 by mast cells. Eur J Immunol 29(4): 1235–1242

    Article  PubMed  CAS  Google Scholar 

  39. Voehringer D, Shinkai K, Locksley RM (2004) Type 2 immunity reflects orchestrated recruitment of cells committed to IL-4 production. Immunity 20(3): 267–277

    Article  PubMed  CAS  Google Scholar 

  40. Oliveira SH, Lukacs NW (2003) Stem cell factor: a hemopoietic cytokine with important targets in asthma. Curr Drug Targets Inflamm Allergy 2(4): 313–318

    Article  PubMed  CAS  Google Scholar 

  41. Hogaboam C, Kunkel SL, Strieter RM, Taub DD, Lincoln P, Standiford TJ, Lukacs NW (1998) Novel role of transmembrane SCF for mast cell activation and eotaxin production in mast cell-fibroblast interactions. J Immunol 160(12): 6166–6171

    PubMed  CAS  Google Scholar 

  42. Wang HW, Tedla N, Lloyd AR, Wakefield D, McNeil PH (1998) Mast cell activation and migration to lymph nodes during induction of an immune response in mice. J Clin Invest 102(8): 1617–1626

    Article  PubMed  CAS  Google Scholar 

  43. Tedla N, Wang HW, McNeil HP, Di Girolamo N, Hampartzoumian T, Wakefield D, Lloyd A (1998) Regulation of T lymphocyte trafficking into lymph nodes during an immune response by the chemokines macrophage inflammatory protein (MIP)-1 alpha and MIP-1 beta. J Immunol 161(10): 5663–5672

    PubMed  CAS  Google Scholar 

  44. Gauchat JF, Henchoz S, Mazzei G, Aubry JP, Brunner T, Blasey H, Life P, Talabot D, Flores-Romo L, Thompson J et al (1993) Induction of human IgE synthesis in B cells by mast cells and basophils. Nature 365: 340–343

    Article  PubMed  CAS  Google Scholar 

  45. Pawankar R, Okuda M, Yssel H, Okumura K, Ra C (1997) Nasal mast cells in perennial allergic rhinitics exhibit increased expression of the Fc epsilonRI, CD40L, IL-4, and IL-13, and can induce IgE synthesis in B cells. J Clin Invest 99(7): 1492–1499

    PubMed  CAS  Google Scholar 

  46. Nakajima T, Inagaki N, Tanaka H, Tanaka A, Yoshikawa M, Tamari M, Hasegawa K, Matsumoto K, Tachimoto H, Ebisawa M et al (2002) Marked increase in CC chemokine gene expression in both human and mouse mast cell transcriptomes following Fcepsilon receptor I cross-linking: an interspecies comparison. Blood 100(12): 3861–3868

    Article  PubMed  CAS  Google Scholar 

  47. Wakahara S, Fujii Y, Nakao T, Tsuritani K, Hara T, Saito H, Ra C (2001) Gene expression profiles for Fc epsilon RI, cytokines and chemokines upon Fc epsilon RI activation in human cultured mast cells derived from peripheral blood. Cytokine 16(4): 143–152

    Article  PubMed  CAS  Google Scholar 

  48. Rumsaeng V, Vliagoftis H, Oh CK, Metcalfe DD (1997) Lymphotactin gene expression in mast cells following Fc(epsilon) receptor I aggregation: modulation by TGF-beta, IL-4, dexamethasone, and cyclosporin A. J Immunol 158(3): 1353–1360

    PubMed  CAS  Google Scholar 

  49. Baghestanian M, Hofbauer R, Kiener HP, Bankl HC, Wimazal F, Willheim M, Scheiner O, Fureder W, Muller MR, Bevec D et al (1997) The c-kit ligand stem cell factor and anti-IgE promote expression of monocyte chemoattractant protein-1 in human lung mast cells. Blood 90(11): 4438–4449

    PubMed  CAS  Google Scholar 

  50. Packard KA, Khan MM (2003) Effects of histamine on Th1/Th2 cytokine balance. Int Immunopharmacol 3(7): 909–920

    Article  PubMed  CAS  Google Scholar 

  51. Stephens R, Randolph DA, Huang G, Holtzman MJ, Chaplin DD (2002) Antigen-nonspecific recruitment of Th2 cells to the lung as a mechanism for viral infection-induced allergic asthma. J Immunol 169(10): 5458–5467

    PubMed  CAS  Google Scholar 

  52. Matsushima H, Yamada N, Matsue H, Shimada S (2004) TLR3-, TLR7-, and TLR9-mediated production of proinflammatory cytokines and chemokines from murine connective tissue type skin-derived mast cells but not from bone marrow-derived mast cells. J Immunol 173(1): 531–541

    PubMed  CAS  Google Scholar 

  53. Kulka M, Alexopoulou L, Flavell RA, Metcalfe DD (2004) Activation of mast cells by double-stranded RNA: evidence for activation through Toll-like receptor 3. J Allergy Clin Immunol 114(1): 174–182

    Article  PubMed  CAS  Google Scholar 

  54. Nagase H, Okugawa S, Ota Y, Yamaguchi M, Tomizawa H, Matsushima K, Ohta K, Yamamoto K, Hirai K (2003) Expression and function of Toll-like receptors in eosinophils: activation by Toll-like receptor 7 ligand. J Immunol 171(8): 3977–3982

    PubMed  CAS  Google Scholar 

  55. Olszewska-Pazdrak B, Casola A, Saito T, Alam R, Crowe SE, Mei F, Ogra PL, Garofalo RP (1998) Cell-specific expression of RANTES, MCP-1, and MIP-1alpha by lower airway epithelial cells and eosinophils infected with respiratory syncytial virus. J Virol 72(6): 4756–4764

    PubMed  CAS  Google Scholar 

  56. Ono SJ, Nakamura T, Miyazaki D, Ohbayashi M, Dawson M, Toda M (2003) Chemokines: roles in leukocyte development, trafficking, and effector function. J Allergy Clin Immunol 111(6): 1185–1199

    Article  PubMed  CAS  Google Scholar 

  57. Trifilo MJ, Lane TE (2004) The CC chemokine ligand 3 regulates CD11c+CD11b+CD8alpha dendritic cell maturation and activation following viral infection of the central nervous system: implications for a role in T cell activation. Virology 327(1): 8–15

    Article  PubMed  CAS  Google Scholar 

  58. Trifilo MJ, Bergmann CC, Kuziel WA, Lane TE (2003) CC chemokine ligand 3 (CCL3) regulates CD8(+)-T-cell effector function and migration following viral infection. J Virol 77(7): 4004–4014

    Article  PubMed  CAS  Google Scholar 

  59. Loetscher P, Seitz M, Clark-Lewis I, Baggiolini M, Moser B (1996) Activation of NK cells by CC chemokines. Chemotaxis, Ca2+ mobilization, and enzyme release. J Immunol 156(1): 322–327

    PubMed  CAS  Google Scholar 

  60. Dorner BG, Scheffold A, Rolph MS, Huser MB, Kaufmann SH, Radbruch A, Flesch IE, Kroczek RA (2002) MIP-1alpha, MIP-1beta, RANTES, and ATAC/lymphotactin function together with IFN-gamma as type 1 cytokines. Proc Natl Acad Sci USA 99(9): 6181–6186

    Article  PubMed  CAS  Google Scholar 

  61. Tekkanat KK, Maassab H, Miller A, Berlin AA, Kunkel SL, Lukacs NW (2002) RANTES (CCL5) production during primary respiratory syncytial virus infection exacerbates airway disease. Eur J Immunol 32(11): 3276–3284

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Mikhak, Z., Luster, A.D. (2007). Chemokines in allergic responses: eosinophils, basophils, mast cells. In: Neote, K., Letts, G.L., Moser, B. (eds) Chemokine Biology — Basic Research and Clinical Application. Progress in Inflammation Research. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7437-2_3

Download citation

Publish with us

Policies and ethics