Skip to main content

Pathophysiologie der Azidose bei Sepsis

  • Conference paper
Metabolismus

Part of the book series: Intensivmedizinisches Seminar ((INTENSIVM.SEM.,volume 7))

  • 39 Accesses

Zusammenfassung

Die Sepsis geht in der Regel mit einer Anzahl von metabolischen Störungen einher: Erhöhte Plasmalaktatkonzentration, metabolische Azidose, verstärkte Glykolyse und ein abnormer „transportabhängiger“ Sauerstoffverbrauch. Es bestehen heute zwei Hypothesen zur Erklärung dieser Veränderungen:

  1. a)

    Die zelluläre Hypoxie resultiert aus einer pathologisch veränderten Mikrozirkulation.

  2. b)

    Es besteht eine primäre Störung im zellulären Energiestoffwechsel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Annat G, Viale JP, Percival C, Froment M, Motin J (1986) Oxygen delivery and uptake in the adult respiratory distress syndrome: lack of relationship when measured independently in patients with normal blood lactate concentrations. Am Rev Resp Dis 133: 999–1001

    PubMed  CAS  Google Scholar 

  2. Dhainaut JF, Huyghebaert MF, Monsallier JF (1987) Coronary hemodynamics and myocardial metabolism of lactate, free fatty acids, glucose an ketones in patients with septic shock. Circulation 75: 533–541

    Article  PubMed  CAS  Google Scholar 

  3. Hochtkiss RS, Long RC, Hall JR (1989) An in vivo examination of rat brain during sepsis with 31P-NMR spectroscopy. Am J Physiol 257: C1055–C1061

    Google Scholar 

  4. Hotchkiss RS, Song SK, Ling CS, Ackerman JJ, Karl IE (1990) Sepsis does not alter red blood cell glucose metabolism or Na+ concentration: a 2H–22Na-NMR study. Am J Physiol 258: R21–R31

    PubMed  CAS  Google Scholar 

  5. Hotchkiss RS, Song SK, Neil JJ (1991) Sepsis does not impair tricarboxylic acid cycle in the heart. Am J Physiol 260: C50–C57

    PubMed  CAS  Google Scholar 

  6. Hotchkiss RS, Karl IE (1992) Reevalution of the role of cellular hypoxia and bionergetic failure in sepsis. JAMA 267: 1503–1510

    Article  PubMed  CAS  Google Scholar 

  7. Jahoor F, Shangraw RE, Miyoshi H, Wallfish H, Herndon DN, Wolfe RR (1989) Role of insulin and glucose oxidation in mediating the protein catabolism of burns and sepsis. Am J Physiol 257: E323–E331

    PubMed  CAS  Google Scholar 

  8. Mohsenifar Z, Jasper AC, Koerner SK (1988) Relationship between oxygen uptake and oxygen delivery in patients with pulmonary hypertension. Am Rev Respir Dis 138: 69–73

    Article  PubMed  CAS  Google Scholar 

  9. Shoemaker WC, Appel PL, Kram HB (1988) Tissue oxygen debt as a determinant of lethal and nonlethal postoperative organ failure. Crit Care Med 16: 1117–1120

    Article  PubMed  CAS  Google Scholar 

  10. Shumacker PT, Samsel RW (1990) Oxygen supply and consumption in the adult respiratory distress syndrome. Clin Chest Med 11: 715–722

    Google Scholar 

  11. Song SK, Hotchkiss RS, Karl IE, Ackerman JJH (1993) Concurrent quantification of tissue metabolism and blood flow via 2H/31P NMR in vivo. III. Alteration of muscle blood flow and metabolism during sepsis. Magn Reson Med (in press)

    Google Scholar 

  12. Tresadern JC, Threlfall CJ, Wilford K, Irving MH (1988) Muscle adenosine 5’triphosphate and creatine phosphate concentration in relation to nutritional status and sepsis in man. Clin Sci 75: 233–242

    PubMed  CAS  Google Scholar 

  13. Vary TC, Siegel JH, Nakatani T, Sato T, Aoyama H (1986) Effect of sepsis on activity of pyruvate dehydrogenase complex in skeletal muscle and liver. Am J Physiol 250: E634–E640

    PubMed  CAS  Google Scholar 

  14. Vary TC, Siegel JH, Fall BD, Morris JH (1988) Metabolic effects of partial reversal of pyruvate dehydrogenase activity by dichloroacetate in sepsis. Circ Shock 24: 3–18

    PubMed  CAS  Google Scholar 

  15. Williams AJ, Mohsenifar Z (1989) Oxygen supply dependency in patients with obstructive sleep apnea and its reversal after therapy with nasal continuous positive airway pressure. Am Rev Resp Dis 140: 1308–1311

    Article  PubMed  CAS  Google Scholar 

  16. Wilmore DW, Goodwin CW, Pruitt BA (1980) Effect of injury and infection on visveral metabolism and circulation. Ann Surg 192: 491–504

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag/Wien

About this paper

Cite this paper

Hotchkiss, R.S. (1994). Pathophysiologie der Azidose bei Sepsis. In: Kleinberger, G., Lenz, K., Ritz, R., Schneeweiß, B., Schuster, HP., Waldhäusl, W. (eds) Metabolismus. Intensivmedizinisches Seminar, vol 7. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9342-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9342-6_6

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82538-9

  • Online ISBN: 978-3-7091-9342-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics