Skip to main content

Der Einfluß der Temperatur auf den Stoffwechsel

  • Conference paper
Metabolismus

Part of the book series: Intensivmedizinisches Seminar ((INTENSIVM.SEM.,volume 7))

  • 40 Accesses

Zusammenfassung

Während der amerikanische Alligator als Wechselblüter lediglich 60 Kcal/24 h bei einer Umgebungstemperatur von 20° C an Wärme produziert [1], verbrennt der Mensch bei der gleichen Umgebungstemperatur 1800 Kcal/24 h, um seine Körpertemperatur auf 37° C konstant zu halten. Drei physiologische Gründe werden für dieses Verhalten genannt [12].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Altman PL, Dittmer DS (eds) (1974) Biology data book, vol 3, 2nd edn. Fed Am Soc Exp Biol

    Google Scholar 

  2. Askanazi J, Rosenbaum SH, Michelsen CB, Elwyn DH, Hyman AI, Kinney JM (1980) Increased body temperature secondary to total parenteral nutrition. Crit Care Med 8: 736–737

    Article  PubMed  CAS  Google Scholar 

  3. Atwater WO, Benedict FG (1903) Experiments on the metabolism of matter and energy in the human body. 1900–1902. United States Department of Agriculture, Office of Experiment, Stations Bull No. 136. United States Government print office

    Google Scholar 

  4. Barr PO, Birke G, Liljedahl SO, Plantin LO (1968) Oxygen consumption and water loss during treatment of burns with warm dry air. Lancet i: 164168

    Google Scholar 

  5. Benzinger TH (1969) Heat regulation: homeostasis of central temperature in man. Physiol Rev 49: 671–759

    PubMed  CAS  Google Scholar 

  6. Biancolini CA, Del Bosco CG, Jorge MA, Poderoso JJ, Capdevila AA (1993) Active core rewarming in neurologic, hypothermic patients: effects on oxygen-realted variables. Crit Care Med 21: 1164–1168

    Article  PubMed  CAS  Google Scholar 

  7. Bittel JHM, Livecchi-Gonnot GH, Hanniquet AM, Poulain C, Etienne JL (1989) Thermal changes observed after J.L. Etienne’s journey to the north pole. Is central nervous system temperature preserved in hypothermia? Eur J Appl Physiol 58: 646–651

    Google Scholar 

  8. Brandi LS, Grana M, Mazzanti T, Giunta F, Natali A, Ferrannini E (1992) Energy expenditure and gas exchange measurements in postoperative patients: thermodilution versus indirect calorimetry. Crit Care Med 20: 1273–1283

    Article  PubMed  CAS  Google Scholar 

  9. Bruder M, Dumont JC, Francois G (1991) Evolution of energy expenditure and nitrogen excretion in severe head-injured patients. Crit Care Med 19: 43–48

    Article  PubMed  CAS  Google Scholar 

  10. Bursztein S, Glaser P, Trichet B, Taitelman U, Nedey R (1980) Utilisation of protein, carbohydrate, and fat in fasting and postabsorptive subjects. Am J Clin Nutr 33: 998–1001

    PubMed  CAS  Google Scholar 

  11. Cabanac M (1975) Temperature regulation. Ann Rev Physiol: 415–439

    Google Scholar 

  12. Cabanac M, Brinnel H (1987) The pathology of human temperature regulation: thermiatrics. Experientia 43: 19–27

    Article  PubMed  CAS  Google Scholar 

  13. Cabanac M, Brinnel H (1985) Blood flow in the emissary veins of the human head during hyperthermia. Eur J Appl Physiol 54: 172–176

    Article  CAS  Google Scholar 

  14. Chiara O, Giomarelli PP, Bioagioli B, Rosi R, Gattinoni L (1987) Hyper-metabolic response after hypothermic cardiopulmonary bypass. Crit Care Med 15: 995–1999

    Article  PubMed  CAS  Google Scholar 

  15. Chiarelli A, Enzi G, Casadei A, Baggio B, Valerio A, Mazzoleni F (1990) Very early nutrition supplementation in burned patients. Am J Clin Nutr 51: 1035–1039

    PubMed  CAS  Google Scholar 

  16. Clemmer TP, Fisher CJ, Bone RC, Slotman GJ, Metz CA, Thomas FO (1992) Hypothermia in the sepsis syndrome and clinical outcome. Crit Care Med 20: 1395–1401

    Article  PubMed  CAS  Google Scholar 

  17. Daly JM, Heymsfield SB, Head CA, Harvey LP, Nixon TW, Katzeff H, Grossman GD (1985) Human energy requirements: overestimation by widely used prediction equation. Am J Clin Nutr 42: 1170–1174

    PubMed  CAS  Google Scholar 

  18. Dubois EF (1921) The basal metabolism in fever. JAMA 5: 353–355

    Google Scholar 

  19. Duff GW (1986) Is fever beneficial to the host: a clinical perspective. Yale J Biol Med 59: 125–130

    PubMed  CAS  Google Scholar 

  20. Erickson RS, Kirklin SK (1993) Comparison of ear-based, bladder, oral, and axillary methods for core temperature measurement. Crit Care Med 21: 1528–1534

    Article  PubMed  CAS  Google Scholar 

  21. Forsberg E, Soop, Thörne A (1991) Energy expenditure and outcome in patients with multiple organ failure following abdominal surgery. Intensive Care Med 17: 403–409

    Article  PubMed  CAS  Google Scholar 

  22. Giovannini I, Chiarla C, Boldrini G, Castiglioni GC, Castagneto M (1988) Calorimetric response to amino acid infusion in sepsis and critical illness. Crit Care Med 16: 667–670

    Article  PubMed  CAS  Google Scholar 

  23. Hammel HT, Elsner RW, Le Messurier DH, Andersen HT, Milan FA (1959) Thermal and metabolic responses of the Australian aborigine exposed to moderate cold in summer. J Appl Physiol 14: 605–615

    Google Scholar 

  24. Hart JS, Sabean HB, Hildes JA, Depocas F, Hammel HT, Andersen KL, Irving L, Foy G (1962) Thermal and metabolic responses of coastal Eskimos during a cold night. J Appl Physiol 17: 953–960

    PubMed  CAS  Google Scholar 

  25. Hausmann D, Nadstawek J, Krajeski W (1991) 02-Aufnahme in der Aufwachphase — Einfluß des Narkoseverfahrens and der postoperativen Pethidingabe. Anästhesist 40: 229–234

    Google Scholar 

  26. Henneberg S, Sjölin J, Stjernström H (1991) Over-feeding as a couse of fever in intensive care patients. Clin Nutr 10: 266–271

    Article  PubMed  CAS  Google Scholar 

  27. Hersio K, Takala J, Kari A, Huttunen H (1991) Changes in whole body and tissue oxygen consumption during recovery from hypothermia: effect of amino acid infusion. Crit Care Med 19: 503–508

    Article  PubMed  CAS  Google Scholar 

  28. Hey EN, O’Connell B. Oxygen consumption and heat balance in the cot-nursed baby. Arch Dis Childhood 45: 335–343

    Google Scholar 

  29. Hoar WS (1983) Temperature. In: Hoar WS (ed) General and comparative physiology, 3rd edn. Prentice Hall, New Jersey

    Google Scholar 

  30. Hunt LM (1969) An analytic formula to instantaneously determine total metabolic rate for the human system. J Appl Phys 5: 731–733

    Google Scholar 

  31. Hynson JM, Sessler D, Moayeri A, Mc Guire (1993) Absence of non-shivering. thermogenesis in anesthetized adult humans. Anesthesiology 79: 695–703

    Article  PubMed  CAS  Google Scholar 

  32. Iapichino G, Radrizzani D (1988) Metabolic support and energy supply for critically ill patients: a pathophysiological approach. Intensive Care World 2: 48–49

    Google Scholar 

  33. Kirvelä OA, Kanto JH (1991) Clinical and metabolic responses to different types of premedication. Anesth Analg 73: 49–53

    PubMed  Google Scholar 

  34. Kluger MJ (1986) Is fever beneficial? Yale J Biol Med 59: 89–95

    PubMed  CAS  Google Scholar 

  35. Kreymann G, Grosser S, Buggisch P, Gottschall C, Matthaei S, Greten H (1993) Oxygen consumption and resting metabolic rate in sepsis, sepsis syndrome, and septic shock. Crit Care Med 21: 1012–1019

    Article  PubMed  CAS  Google Scholar 

  36. Liggett SB, Renfro AD (1990) Energy exempeditures of mechanically ventilated nonsurgical patients. Chest 98: 682–686

    Article  PubMed  CAS  Google Scholar 

  37. Little RA (1990) Ambient temperature and postoperative catabolism. Intensive Care Med 16: 283–284

    Article  PubMed  CAS  Google Scholar 

  38. Mekjavic IB, Sundberg CJ, Linnarsson D (1991) Core temperature “null zone”. J Appl Physiol 71: 1289–1295

    PubMed  CAS  Google Scholar 

  39. Mochizuki H, Trocki O, Dominioni L, Brackett KA, Joffe SN, Alexander JW (1984) Mechanism of prevention of postburn hypermetabolism and catabolism by early enteral feeding. Ann Surg 200: 297–310

    Article  PubMed  CAS  Google Scholar 

  40. Pettenkofer M von (1862) Uber die Respiration. Annal Chem [Suppl] 2: 1

    Google Scholar 

  41. Pflüger E (1878) Über die Wärme and Oxydation der lebendigen Materie. Arch Ges Physiol 18: 247

    Article  Google Scholar 

  42. Prakash O, Jonson B, Bos E, Meij S, Hugenholtz PG, Hekman W (1978) Cardiorespiratory and metabolic effects of profound hypothermia. Crit Care Med 6: 340–346

    Article  PubMed  CAS  Google Scholar 

  43. Rodriguez JL, Weissman C, Damask MC, Askanazi J, Hyman AI, Kinney JM (1983) Physiologic requirements during rewarming: suppression of the shivering response. Crit Care Med 11: 490–497

    PubMed  CAS  Google Scholar 

  44. Rodriguez J L, Weissman C, Damask MC, Askanazi J, Hyman AI, Kinney JM (1983) Morphine and postoperative rewarming in critically ill patients. Circulation 6: 1238–1246

    Article  Google Scholar 

  45. Ryan DW, Clague MB (1990) Nitrogen sparing and the catabolic hormones in patients nursed at an elevated ambient temperature following major surgery. Intensive Care Med 16: 287–290

    Article  PubMed  CAS  Google Scholar 

  46. Ryan DW (1983) The influence of environmental temperature (32° C) on catabolism using the clinitron fluidised bed. Intensive Care Med 9: 279–281

    Article  PubMed  CAS  Google Scholar 

  47. Schumaker PT, Rowland J, Saltz S, Nelson DP, Wood LDH (1987) Effects of hyperthermia and hypothermia on oxygen extraction by tissues during hypovolemia. J Appl Physiol 63: 1246–1252

    Google Scholar 

  48. Semsroth M, Hiesmayr M (1990) Kontinuierliche Zufuhr von Morphium ist effektiver als Bolusgabe zur Analgosedierung im Kindesalter. Anästhesist 39: 552–556

    CAS  Google Scholar 

  49. Semsroth M (1985) Indirekte Kalorimetrie bei beatmeten polytraumatisierten Patienten. Infusionstherapie 12: 213–237

    CAS  Google Scholar 

  50. Sessler DI, Olofsson CI, Rubinstein EH (1988) The thermoregulatory threshold in humans during nitrous oxide-fentanyl anesthesia. Anesthesiology 69: 357–364

    Article  PubMed  CAS  Google Scholar 

  51. Steltzer H (1993) Abfall des Hirndrucks unter Hämofiltration mit leichter Hypothermie (persönliche Mitteilung)

    Google Scholar 

  52. Styrt B, Sugarman B (1990) Antipyresis and fever. Arch Intern Med 150: 1589–1597

    Article  PubMed  CAS  Google Scholar 

  53. Swinamer DL, Grace MG, Hamilton SM, Jones RL, Roberts P, King EG (1990) Preditive equation for assessing energy expenditure in mechanically ventilated critically ill patients. Crit Care Med 18: 657–661

    Article  PubMed  CAS  Google Scholar 

  54. Swinamer DL, Phang PT, Jones RL, Grace M, King EG (1988) Effect of routine administration of analgesia on energy expenditure in critically ill patients. Chest 92: 4–10

    Article  Google Scholar 

  55. Takala J, Askanazi J, Weissman C, Lasala PA, Milic-Emili J, Elwyn DH, Kinney JM (1988) Changes in respiratory control induced by animo acid infusions. Crit Care Med 16: 465–469

    Article  PubMed  CAS  Google Scholar 

  56. Takala J, Keinänen O, Väisänen P, Kari A (1989) Measurement of gas exchange in intensive care: laboratory and clinical validation of a new device. Crit Care Med 17: 1041–1047

    Article  PubMed  CAS  Google Scholar 

  57. Wenzel C, Werner J (1988) Physical versus pharmacological counter measures. Eur J Appl Physiol 57: 81–88

    Article  CAS  Google Scholar 

  58. Weir JB Ve D (1949) New methods for calculating the metabolic rate with special reference to protein metabolism. J Physiol 109: 1–9

    PubMed  Google Scholar 

  59. Wetterberg T, Steen S (1992) Combined use of hypothermia and buffering in the treatment of critical respiratory failure. Acta Anaesthesiol Scand 36: 490–492

    Article  PubMed  CAS  Google Scholar 

  60. Williams RR, Fuenning CR (1991) Circulatory indirect calorimetry in the critically ill. JPEN 15: 509–512

    Article  CAS  Google Scholar 

  61. Yousef (1987) Effects of climatic stresses on thermoregulatory processes in man. Experientia 43: 14–19

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag/Wien

About this paper

Cite this paper

Hiesmayr, M. et al. (1994). Der Einfluß der Temperatur auf den Stoffwechsel. In: Kleinberger, G., Lenz, K., Ritz, R., Schneeweiß, B., Schuster, HP., Waldhäusl, W. (eds) Metabolismus. Intensivmedizinisches Seminar, vol 7. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9342-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9342-6_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82538-9

  • Online ISBN: 978-3-7091-9342-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics