Skip to main content

Movement of Genetic Material Between the Chloroplast and Mitochondrion in Higher Plants

  • Chapter
Genetic Flux in Plants

Part of the book series: Plant Gene Research ((GENE))

Abstract

The organelles within the eukaryotic cell have originated in one of two ways: I, the mitochondrion and chloroplast originally descended from free living bacteria-like organisms which entered into an endosymbiotic relationship within a host cell having a nuclear genome, or II, that the nuclear and organelle genomes became physically compartmentalized and functionally specialized within a single cell. The arguments relating to these two evolutionary hypotheses have been discussed in detail elsewhere (Gray and Doolittle, 1982) and will not be subject to discussion here, though it does appear that the endosymbiont hypothesis is more acceptable for the origin of both the mitochondrion and chloroplast.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ballantine, J. E. M., Forde, B. J., 1970: The effect of light intensity and temperature on plant growth and chloroplast ultrastructure in soyabean. Amer. J. Bot. 57, 1150–1159.

    Article  CAS  Google Scholar 

  • Bendich, A. J., 1982: Plant mitochondrial DNA: The last frontier. In: Slonimski, P., Borst, P., Attardi, G. (eds.). Mitochondrial Genes, pp. 477–481. Cold Spring Harbor, N. Y.

    Google Scholar 

  • Birky Jr., C. W., 1978: Transmission genetics of mitochondria and chloroplasts. Ann. Rev. Genet. 12, 471–512.

    Article  PubMed  Google Scholar 

  • Birky Jr., C. W., 1983: Relaxed cellular controls and organelle heredity. Science 222, 468–475.

    Article  PubMed  Google Scholar 

  • Birky Jr., C. W., Acton, A. R, Dietrich, R, Carver, M., 1982: Mitochondrial transmission genetics: replication, recombination, and segregation of mitochondrial DNA and its inheritance in crosses. In: Slonimski, P., Borst, P., Attardi, G. (eds.). Mitochondrial Genes, pp. 333–348. Cold Spring Harbor, N. Y

    Google Scholar 

  • Brown, R. H., Rigsby, L. L., Akin, D. E., 1983: Enclosure of mitochondria by chloroplasts. Plant Physiol. 71, 437–439.

    Article  PubMed  CAS  Google Scholar 

  • Calvayrac, R., Laval-Martin, D., Briand, J., Farineau, J., 1981: Paramylon synthesis by Euglene gracilis photoheterotrophically grown under low O2 pressure. Planta 153, 6–13.

    Article  CAS  Google Scholar 

  • Chao, S., Sederoff, R. R, Levings, C. S. III, 1983: Partial sequence analysis of the 5S to 18 S rRNA gene region of the maize mitochondrial genome. Plant Phys. 71, 190–193.

    Article  CAS  Google Scholar 

  • Crotty, W. J., Ledbetter, M. C., 1973: Membrane continuities involving chloroplasts and other organelles in plant cells. Science 182, 839–841.

    Article  PubMed  CAS  Google Scholar 

  • Edwards, K, Kossel, H., 1981: The rRNA operon from Zea mays chloroplasts: nucleotide sequence of 23 S rDNA and its homology with E. coli 23 S rRNA. Nucleic Acids Res. 9, 2853–2869.

    Article  PubMed  CAS  Google Scholar 

  • Farrelly, F., Butow, R. A., 1983: Rearranged mitochondrial genes in the yeast nuclear genome. Nature 301, 296–301.

    Article  PubMed  CAS  Google Scholar 

  • Fox, T. D., Leaver, C. J., 1981: The Zea mays mitochondrial gene coding cytochrome oxidase subunit II has an intervening sequence and does not contain TGA codons. Cell 26, 315–323.

    Article  PubMed  CAS  Google Scholar 

  • Gellissen, G., Bradfield, J. Y, White, B. N., Wyatt, G. R, 1983: Mitochondrial DNA sequences in the nuclear genome of a locust. Nature 301, 631–634.

    Article  PubMed  CAS  Google Scholar 

  • Gengenbach, B. G., Connelly, J. A, Pring, D. R, Conde, M. F., 1981: Mitochondrial DNA variation in maize plants regenerated during tissue culture selection. Theor. Appl. Genet. 59, 161–167.

    Article  CAS  Google Scholar 

  • Gray, M. W., Doolittle, W. F., 1982: Has the endosymbiont hypothesis been proven? Microbiol. Rev. 46, 1–42.

    CAS  Google Scholar 

  • Hadler, H. I., Dimitrijevic, B., Mahalingam, R., 1983: Mitochondrial DNA and nuclear DNA from normal rat liver have a common sequence. Proc. Natl. Acad. Sci., U.S.A. 80, 6495–6499.

    Article  PubMed  CAS  Google Scholar 

  • Hanson, M. R., Conde, M. F., 1985: Functioning and variation of cytoplasmic genomes: lessons from cytoplasmic-nuclear interactions affecting male fertility in plants. Intern. Rev. Cytology (in press).

    Google Scholar 

  • Hauswirth, W. W., Laipis, P. J., 1982 a: Mitochondrial DNA polymorphism in a maternal lineage of Holstein cows. Proc. Natl. Acad. Sci., U.S.A. 79, 4686–4690.

    Article  PubMed  CAS  Google Scholar 

  • Hauswirth, W. W., Laipis, P. J., 1982 b: Rapid variation in mammalian mitochondrial genotypes: implications for the mechanism of maternal inheritance. In: Slonimski, P., Borst, P., Attardi, G. (eds.). Mitochondrial Genes, pp. 137–141. Cold Spring Harbor, N. Y.

    Google Scholar 

  • Hayashi, J.-L, Tagashira, Y, Yoshida, M. C., Ajiro, K., Sekiguchi, T., 1983: Two distinct types of mitochondrial DNA segregation in mouse-rat hybrid cells. Stochastic segregation and chromosome-dependent segregation. Exp. Cell Res. 147, 51–61.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs, H. T., Posakony, J. W., Grula, J. W., Roberts, J. W., Xin, J.-H., Britten, R. J., Davidson, E. H., 1983: Mitochondrial DNA sequences in the nuclear genome of Strongylocentrotus purpuratus. J. Mol. Biol. 165, 609–632.

    Article  PubMed  CAS  Google Scholar 

  • Kemble, R. J., Flavell, R. B., Brettell, R. I. S., 1982: Mitochondrial DNA analyses of fertile and sterile maize plants derived from tissue culture with the Texas male sterile cytoplasm. Theor. Appl. Genet. 62, 213–217.

    CAS  Google Scholar 

  • Kemble, R. J., Mans, R. J., Gabay-Laughnan, S., Laughnan, J. R., 1983: Sequences homologous to episomal mitochondrial DNAs in the maize nuclear genome. Nature 304, 744–747.

    Article  CAS  Google Scholar 

  • Larrinua, I. M., Muskavitch, K. M. T., Gubbins, E. J., Bogorad, L., 1983: A detailed restriction endonuclease site map of the Zea mays plastid genome. Plant Mol. Biol. 2, 129–140.

    Article  CAS  Google Scholar 

  • Levings, C. S. III, Kim, B. D., Pring, D. R., Conde, M. F., Mans, R. J., Laughnan, J. R., Gabay-Laughnan, S. J., 1980: Cytoplasmic reversion of cms-S in maize: association with a transpositional event. Science 209, 1021–1023.

    Article  PubMed  CAS  Google Scholar 

  • Lonsdale, D. M., 1984: A review of the structure and organisation of the mitochondrial genome of higher plants. Plant Mol. Biol. 3, 201–206.

    Article  CAS  Google Scholar 

  • Lonsdale, D. M., Thompson, R. D., Hodge, T. P., 1981: The integrated forms of the SI and S2 DNA elements of maize male-sterile mitochondrial DNA are flanked by a large repeated sequence. Nucl. Acid Res. 9, 3657–3669.

    Article  CAS  Google Scholar 

  • Lonsdale, D. M., Hodge, T. P., Howe, C. J., Stern, D. B., 1983: Maize mitochondrial DNA contains a sequence homologous to the ribulose-l,5-bisphosphate carboxylase large subunit gene of chloroplast DNA. Cell 34, 1007–1014.

    Article  PubMed  CAS  Google Scholar 

  • Michaels, G. S., Hauswirth, W. W., Laipis, P. J., 1982: Mitochondrial DNA copy number in bovine oocytes and somatic cells. Dev. Biol. 94, 246–251.

    Article  PubMed  CAS  Google Scholar 

  • Montes, G., Bradbeer, J. W., 1976: An association of chloroplasts and mitochondria iriZea mays and Hyptis suaveolens. Plant Sci. Lett. 6, 35–41.

    Article  Google Scholar 

  • Olivo, P. D., van de Walle, M. J., Laipis, P. J., Hauswirth, W. W., 1983: Nucleotide sequence evidence for rapid genotypic shifts in the bovine mitochondrial DNA D-loop. Nature 306, 400–402.

    Article  PubMed  CAS  Google Scholar 

  • Palmer, J. D., Shields, C. R. 1984: Tripartite structure of the Brassica campestris mitochondrial genome. Nature 307, 437–440.

    Article  CAS  Google Scholar 

  • Piko, L., Matsumoto, L., 1976: Number of mitochondria and some properties of mitochondrial DNA in the mouse egg. Dev. Biol. 49, 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Schardl, C. L., Pring, D. R., Fauron, C. M.-R, Lonsdale, D. M., 1984: Mitochondrial DNA rearrangements resulting in fertile revertants of S-type male sterile maize submitted.

    Google Scholar 

  • Scott, N. S., Timmis, J. N., 1984: Homologies between nuclear and plastid DNA in spinach. Theor. Appl. Genet. 67, 279–288.

    Article  CAS  Google Scholar 

  • Selden, R. F., Steinmetz, A., Mcintosh, L., Bogorad, L., Burkard, G., Mubumbila, M., Kuntz, M., Grouse, E. J., Weil, J. H., 1983: Transfer RNA genes of Zea mays chloroplast DNA. Plant Mol. Biol. 2, 141–153.

    Article  CAS  Google Scholar 

  • Stern, D. B., Lonsdale, D. M., 1982: Mitochondrial and chloroplast genomes of maize have a 12-kilobase DNA sequence in common. Nature 229, 698–702.

    Article  Google Scholar 

  • Stern, D. B., Palmer, J. D., 1983: Extensive and widespread homologies between mitochondrial DNA and chloroplast DNA in plants. Proc. Natl. Acad. Sci., U.S.A. 81, 1946–1950.

    Article  Google Scholar 

  • Stern, D. B., Palmer, J. D., Thompson, W. F., Lonsdale, D. M., 1983: Mitochondrial DNA sequence evolution and homology to chloroplast DNA in angiosperms. In: Goldberg, R. B. (ed.), UCLA Symposia on Molecular and Cellular Biology (New Series, Vol. 12), pp. 467–477. New York: Alan R. Liss Inc.

    Google Scholar 

  • Timmis, J. N., Scott, N. S., 1983: Sequence homology between spinach nuclear and chloroplast genomes. Nature 305, 65–67.

    Article  CAS  Google Scholar 

  • Tsuzuki, T., Nomiyama, H., Setoyama, C., Maeda, S., Shimada, K., 1983: Presence of mitochondrial-DNA-like sequences in the human nuclear DNA. Gene 25, 223–229.

    Article  PubMed  CAS  Google Scholar 

  • van den Boogaart, P., Samallo, J., Asgsteribb, E., 1982: Neurospora crassa possesses in addition to the nuclear gene for a dicyclohexyl-carbodiimide-binding protein of the mitochondrial ATPase a similar gene on mitochondrial DNA. Nature 298, 187–189.

    Article  PubMed  Google Scholar 

  • Ward, B. L., Anderson, R. S., Bendich, A. J., 1981: The mitochondrial genome is large and variable in a family of plants (Cucurbitaceae). Cell 25, 793–803.

    Article  PubMed  CAS  Google Scholar 

  • Wellburn, F. A. M., Wellburn, A. R., 1979: Conjoined mitochondria and plastids in the barley mutant ‘Albostrians’. Planta 147, 178–179.

    Article  Google Scholar 

  • Wildman, S. G., Hongladarom, T., Honda, S. I., 1962: Chloroplasts and mitochondria in living plant cells: cinephotomicrographic studies. Science 138, 434–436.

    Article  PubMed  CAS  Google Scholar 

  • Wildman, S. G., Jope, C., Atchison, B. A., 1974: Role of mitochondria in the origin of chloroplast starch grains. Description of the phenomenon. Plant Physiol. 54, 231–237.

    Article  PubMed  CAS  Google Scholar 

  • Wright, R. M., Cummings, D. J., 1983: Integration of mitochondrial gene sequences within the nuclear genome during senescence in a fungus. Nature 302, 86–88

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag/Wien

About this chapter

Cite this chapter

Lonsdale, D.M. (1985). Movement of Genetic Material Between the Chloroplast and Mitochondrion in Higher Plants. In: Hohn, B., Dennis, E.S. (eds) Genetic Flux in Plants. Plant Gene Research. Springer, Vienna. https://doi.org/10.1007/978-3-7091-8765-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-8765-4_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-8767-8

  • Online ISBN: 978-3-7091-8765-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics