Skip to main content

Antiproton Reactions and Charm (With and Without Nuclei)

  • Conference paper
Few-Body Problems in Physics

Part of the book series: Few-Body Systems ((FEWBODY,volume 6))

  • 150 Accesses

Abstract

The availability of pure, high intensity, ultra-high energy resolution antiproton beams in the 0.1 to 10 GeV/c range has made it possible to make precision studies of few-quark systems and the interactions between them. Proton-antiproton interaction can now be studied with precision heretofore achieved only in the study of the proton-proton interaction. It has become possible to test scaling predictions of perturbative QCD, e.g., for the proton form-factor in the time-like region. Precision measurements of the spectra of qq mesons with charm and beauty quarks are leading to deeper understanding of the quark-quark interactions. Rather unusual and exotic effects are predicted when charmonium is embedded in nuclei. Some of these new developments are described and the feasibility of several nuclear experiments is examined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fermilab experiment E-760, “A Proposal to Investigate the Formation of Charmonium States Using the pbar Accumulator Ruig”, Collaboration: Fermilab, Universities of Errara, Genoa, and Torino, University of California (Irvine), Northwestern University and Pennsylvania State University.

    Google Scholar 

  2. Review of Particle Properties“ Physics Letters B239 (1990) 1.

    Google Scholar 

  3. E.D. Bloom and C.W. Peck, Ann. Rev. Nucl. Part. Sci. 33 (1983) 143.

    Article  ADS  Google Scholar 

  4. J.Lee-Franzini, Nude Phys. B (Proc. Suppl.) 3 (1988) 139.

    Google Scholar 

  5. K.K. Seth, Proc. Int. Conf. on Medium and High Energy Nuclear Physics, edited by W.-Y Pauchy Hwang, K.-F. Liu and Y. Tzeng, World Scientific (Singapore 1989 ) pp. 773–788.

    Google Scholar 

  6. C. Baglin et al., Phys. Lett B171 (1986) 135; B172 (1986) 455, B187 (1987) 191, B195 (1987) 85; B225(1989) 296; B231 (1989) 557; also Nucl. Phys. B286 (1987) 592.

    Google Scholar 

  7. Design Report: Tevatron I Project, Fermi National Accelerator Laboratory, Batavia, IL (unpublished), Sept. 1984; J. Peoples, Proc. Workshop on the Design of a Low Energy Antiproton Facility, edited by D. Cline, World Scientific (Singapore 1986) p.

    Google Scholar 

  8. L. Bartoszek et al., Nucl. Instr. Meth. A301 (1991) 47. M.A. Hasan et al., Nucl. Instr. Meth. A295 (1990) 73. M. Sarmiento et al., Nucl. Instr. Meth. (to be published).

    Google Scholar 

  9. T.A. Armstrong et al., Phys. Rev. Lett., submitted for publication.

    Google Scholar 

  10. P. Kroll and W. Schweiger, Nucl. Phys. A503 (1989) 865.

    Article  Google Scholar 

  11. P. Jenni et al., Nucl Phys. B129 (1977) 232.

    Article  ADS  Google Scholar 

  12. Y.L. Zhang et al., Proc. Hadron ‘81, University of Maryland, Aug. 1991.

    Google Scholar 

  13. S.J. Brodsky and G.R. Farrar, Phys. Rev. Lett. 31 (1973) 1153; Phys. Rev. D11 (1975) 1309.

    Google Scholar 

  14. G. Bassompierre et al., Phys. Lett. 68B (1977) 477, also Nuovo Cimento 73A (1983) 347; B. Delcourt et al., Phys. Lett. 86B (1979) 395; D. Bisello et al., Nucl. Phys. B224 (1983) 379.

    Google Scholar 

  15. G. Bardin et al., Phys. Lett. B255 (1991) 149.

    Google Scholar 

  16. R. Anderson et al., Phys. Rev. Lett. 38 (1977) 263.

    Article  ADS  Google Scholar 

  17. U. Camerini et al., Phys. Rev. Lett. 35 (1975) 1040; B. Knapp et al., Phys. Rev. Lett. 34 (1975) 1040; J. Branson et al., Phys. Rev. Lett. 38 (1977) 1334, M.D. Sokoloff et al., Phys. Rev. Lett. 57 (1986) 3003.

    Google Scholar 

  18. S.J. Brodsky and A.H. Mueller, Phys. Lett. B206 (1988) 685.

    Google Scholar 

  19. T. Matsui and H. Satz, Phys. Lett. B179 (1986) 416.

    Google Scholar 

  20. C. Baglin et al., Phys. Rev. Lett. B220 (1989) 471; B251 (1990) 465; B255 (1991) 459.

    Google Scholar 

  21. H. Satz, Nucl. Phys. A. 488 (1988) 511c; V. Cerny et al., Z. Phys. C46 (1990) 481, and references therein.

    Google Scholar 

  22. G.R. Farrar, L.L. Frankfurt, M.I. Strikman and H. Liu, Nucl. Phys. B345 (1990) 125.

    Article  ADS  Google Scholar 

  23. A.S. Caroll et al., Phys. Rev. Lett. 61 (1988) 1698.

    Article  ADS  Google Scholar 

  24. B. Parker et al., Phys. Rev. Lett. 63 (1989) 1570.

    Article  ADS  Google Scholar 

  25. R.S. Bhalerao and L.C. Liu, Phys. Rev. Lett. 54 (1985) 865; LC. Liu and Q. Haider, Phys. Rev. C345 (1986) 1845; Q. Haider and L.C. Liu, Phys. Lett. B195 (1986) 515.

    Google Scholar 

  26. G.L Li, W.K. Cheng, and T.T.S. Kuo, Phys. Lett. 8195 (1987) 515.

    Google Scholar 

  27. R.E. Chrien et al., Phys. Rev. Lett 60 (1988) 2595.

    Article  ADS  Google Scholar 

  28. S.J. Brodsky, I. Schmidt, and G.F. de Teramond, Phys. Rev. Lett. 64 (1990) 1011.

    Article  ADS  Google Scholar 

  29. A Donnachie and P.V. Landshoff; Nucl. Phys. B244 (1984) 322.

    Article  ADS  Google Scholar 

  30. S.J. Brodsky and B. Chertok, Phys. Rev. D14 (1976) 3003.

    ADS  Google Scholar 

  31. R. Arnold et al., Phys. Rev. Lett. 40 (1978) 1429.

    Article  ADS  Google Scholar 

  32. Our estimate of S - 2 x 10 is substantially different from that quoted by Brodsky et al. [28]. We have used experimentally measured Fd2 (4.62 GeV/c2) - 1 x 10 8. due to Arnold et al. (Phys. Rev. Lett. 35 (1975) 776).

    Google Scholar 

  33. K. Maruyama, Proc. Workshop on Science at the KAON factory, TRIUMF (1990) vol. 2. Maruyama makes the mistake of assuming a beam intensity of 1.1x108 Ws with a 0.1% energy resolution. Actually, this intensity is projected for Ap/p = 4%. Maruyama also assumes formation cross sections of 10 32 cm2, which are six orders of magnitude larger than our calculated value of 10-38 cm2. The only way such a large discrepancy can arise is if Mazuyama has mistakenly used FA (Q2) instead of FA2(Q2).

    Google Scholar 

  34. D. Kharzeev, INFN (Pavia), preprint FNT/T-90/22, Dec. 1990.

    Google Scholar 

  35. E.V. Shuryak, Nucl. Phys. B198 (1982) 83.

    Article  ADS  Google Scholar 

  36. G.E. Brown, priv. comm.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag

About this paper

Cite this paper

Seth, K.K. (1992). Antiproton Reactions and Charm (With and Without Nuclei). In: Ciofi degli Atti, C., Pace, E., Salmè, G., Simula, S. (eds) Few-Body Problems in Physics. Few-Body Systems, vol 6. Springer, Vienna. https://doi.org/10.1007/978-3-7091-7581-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-7581-1_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7583-5

  • Online ISBN: 978-3-7091-7581-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics