Skip to main content

Microsystem CAD: From FEM to System Simulation

  • Conference paper
Simulation of Semiconductor Processes and Devices 1998

Abstract

Microsystem technology is a highly interdisciplinary area. Therefore, a combination of different CAD methods and tools is necessary for supporting microsystem design. Process and device simulation are absic CAD methods but more and more higher levels of abstraction nedd to be applied in order to analyze microsystems adequately. This paper summarizes several modeling and simulation strategies for system simulation of microsystems on different levels of abstraction: generalized Kirchhiffian networks, black-box models, macromodels, the application of hardware description languages, and simulator coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Box, G.E.P.; Draper, N.R.: Empirical Model Building and Response Surfaces. Wiley, 1987

    Google Scholar 

  2. Casinovi, G.; Sangiovanni-Vincentelli, A.: A macromodeling algorithm for analog circuits. IEEE Trans. CAD-10(1991)2, 150–160

    Google Scholar 

  3. Cellier, F. E.: Continuous System Modeling. Berlin: Springer-Verlag, 1991.

    MATH  Google Scholar 

  4. Clauß, C.; Haase, J.; Schwarz, P.: An approach to analogue behavioural modelling. Proc. VHDL User Forum Europe, Dresden, May 1996, pp. 85–96

    Google Scholar 

  5. Conelly, J.A.; Choi, P.: Macromodeling with SPICE. Prentice Hail, Englewood Cliffs 1992

    Google Scholar 

  6. Crary, S. B.; Zhang, Y.: CAEMEMS: An integrated computer-aided engineering workbench for micro- electro mechanical systems. Proc. MEMS ’90, 113–115

    Google Scholar 

  7. Eccardt, P.C. et al.: Coupled finite element and network simulation for microsystem components. Proc. MICRO SYSTEM Technologies (MST’96), VDI-Verlag, Potsdam 1996, 145–150

    Google Scholar 

  8. Elmqvist, H. et al.: Modelica — A Unified Object-Oriented Language for Physical Systems Modeling. Version 1, September 1997http://www.Dynasim.se/Modelica/Modelical.html

  9. Gerlach, G.; Dötzel, W.: Grundlagen der Mikrosystemtechnik. Hanser-Verlag, München 1997

    Google Scholar 

  10. Haase, J.; Schwarz, P.: Modeling and simulation of heterogenous systems. Proc. Workshop on System Design Automation SDA’98, Dresden 1998, 103–110

    Google Scholar 

  11. Hofmann, K.: Differential model generation for microsystem components using analog hardware description languages. Dissertation, Darmstadt 1997

    Google Scholar 

  12. Isermann, R.: Identifikation dynamischer Systeme. Springer, Berlin 1992

    Google Scholar 

  13. Jackson, M. F.; Chua, L. O.: Device modeling by radial basis functions. IEEE Trans. CAS-I 39(1992)1, pp. 19–27

    Google Scholar 

  14. Kaltenbacher, M.; Landes, H., Lerch, R.; Lindiger, F.: A finite-element/boundary-element method for the simulation of coupled electrostatic-mechanical systems. J. Phys.III France 7 (1997), pp. 1975–1982

    Google Scholar 

  15. Karam, J.M. et al.: Low cost access to MST: manufacturing techniques and related CAD tools. Proc. MICRO SYSTEM Technologies (MST’96), VDI-Verlag, Potsdam 1996, 127–132

    Google Scholar 

  16. Kecskemethy, A.; Hiller, M.: An object-oriented approach for an effective formulation of multibody dynamics. 2nd US Natl. Congress Computational Mechanics, Washington, 1993

    Google Scholar 

  17. Klein, A.; Schroth, A.; Blochwitz, T.; Gerlach, G.: Two approaches to coupled simulation of complex microsystems. Proc. EUROSIM ‘95, Vienna 1995, 639–644

    Google Scholar 

  18. Klein, A.; Gerlach, G.: System modelling of microsystems containing mechanical bending plates using an advanced network description method. Proc. MST’96, Potsdam 1996, 299–304

    Google Scholar 

  19. Koenig, H. E.; Blackwell, W. A.: Electromechanical System Theory. McGraw-Hill, 1961

    Google Scholar 

  20. Korvink, J.G. et al.: SESES: a comprehensive MEMS modeling system. Proc. MEMS’94, 22–27

    Google Scholar 

  21. Lenk, A.: Elektromechanische Systeme (3 vol.). Verlag Technik, Berlin 1971–1973

    Google Scholar 

  22. Lorenz, G.; Neul, R.: Network-type modeling of micromachined sensor systems. Proc. MSM98.

    Google Scholar 

  23. Mammen, T. et al.: MASE — Werkzeug zur Generierung von Makromodellen fur Mikrosystemkompo-nenten. Proc. 3. Workshop „Methoden und Werkzeuge…“, Frankfurt 1996, 138–145

    Google Scholar 

  24. Meinzer, S. et al.: Simulation and design optimization of microsystems based on standard analog simulators and adaptive search techniques. VHDL User Forum Europe, Dresden 1996, 169–180

    Google Scholar 

  25. MEMCAD 3.1, see http://www.memcad.com/products.html

    Google Scholar 

  26. Nagler, O.; Folkmer, F.: FEM-Simulation piezoresistiver Meßwandler am Beispiel eines mikromecha- nischen Beschleunigungssensors. 13. CAD-FEM User’s Meeting, 1995

    Google Scholar 

  27. Neul, R. et al.: A modeling approach to include mechanical microsystem components into system simulation. Proc. Design, Automation & Test Conf. (DATE’98), Paris, 1998, 510–517

    Google Scholar 

  28. Nguyen, T. V.: Recursive convolution and discrete time domain simulation of lossy coupled transmission lines. IEEE Transactions on CAD 13 (1994)10, pp. 1301–1305

    Google Scholar 

  29. Otter, M.: Objektorientierte Modellierung mechatronischer Systeme am Beispiel geregelter Roboter. Dissertation, Bochum 1994

    Google Scholar 

  30. Pelz, G. et al.: MEXEL: Simulation of microsystems in a circuit simulator using automatic electrome-chanical modeling. Proc. MICRO SYSTEM Technologies, VDE-Verlag, Berlin 1994, 651–657

    Google Scholar 

  31. Reinschke, K.; Schwarz, P.: Verfahren zur rechnergestützten Analyse linearer Netzwerke. Akademie-Verlag, Berlin 1976

    MATH  Google Scholar 

  32. Romanowicz, B. et al.: Microsystem modeling using VHDL 1076.1. Proc. Microsim’97, 179–188

    Google Scholar 

  33. Schrag, G. et al.: Device- and system-level models for micropump simulation. Proc. MicroMat’97, Berlin 1997, 941–944

    Google Scholar 

  34. Schulte, S.: Simulation of cross-coupled effects in physical sensors. Proc. MST’94, 833–842

    Google Scholar 

  35. Schwarz, P.: Simulation von Mikrosystemen. 2. GME/ITG-Workshop, Ilmenau 1993, 247–256

    Google Scholar 

  36. Senturia, S.; Aluru, N. R.; White, J.: Simulating the behavior of MEMS devices: computational methods and needs. IEEE Trans. Computational Science & Engineering, January 1997, 30–54

    Google Scholar 

  37. Sigmund, O.: Design of material structures using topology optimization. Diss., Lyngby 1994.

    Google Scholar 

  38. Szekely, V.; Rencz, M.: Fast field solver for thermal and electrostatic analysis. Proc. DATE’98, Paris 1998, 518–523

    Google Scholar 

  39. Tanner Tools MEMS Pro, Tanner EDA, Pasadena, CA 91107, USA.

    Google Scholar 

  40. Tanurhan, Y. et al.: System level specification and simulation for microsystem design. Proc. MICRO SYSTEM Technologies, VDE-Verlag, Berlin 1994, 849–860

    Google Scholar 

  41. Tonti, E.: The reason for analogies between physical theories. Appl. Math. Modelling 1 (1976), 37–50

    Article  MathSciNet  Google Scholar 

  42. Unbehauen, R.: Netzwerk- und Filtersynthese. R. Oldenbourg, München 1992

    Google Scholar 

  43. VHDL-AMS: IEEE DASC 1076.1 WG Documents. See http://www.vhdl.org/analog/

    Google Scholar 

  44. Voigt, P.; Wachutka, G.: Electro-fluidic microsystem modeling based on Kirchhoffian network theory. Sensor and Actuators A 66 (1998)1–3, pp. 6–14

    Google Scholar 

  45. Voll, I; Haase, J.: Rekursives Faltungsmodell fur ein allgemeines Netzwerksimulationsprogramm. Proc. 40. IWK TH Ilmenau, 1995, vol. 3, 269–274

    Google Scholar 

  46. Wachutka, G.: Tailored modeling of miniaturized electrothermalmechanical systems using thermodynamic methods. DSC-Vol. 40, Micromechanical Systems, ASME, New York 1992, 183–198

    Google Scholar 

  47. Wachutka, G.: Tailored modeling: a way to the ‘virtual microtransducer fab’ ? Sensor and Actuators A 46–47 (1995), pp. 603–612

    Google Scholar 

  48. Wünsche, S.; Clauß, C.; Schwarz. P.; Winkler, F.: Electro-thermal circuit simulation using simulator coupling. IEEE Trans. VLSI-5(1997)3, 277–282

    Google Scholar 

  49. Wünsche, S.: Ein Beitrag zur Einbeziehung thermisch-elektrischer Wechselwirkungen in den Entwurfsprozeß integrierter Schaltungen. Dissertation TU Chemnitz, 1998

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag/Wien

About this paper

Cite this paper

Schwarz, P. (1998). Microsystem CAD: From FEM to System Simulation. In: De Meyer, K., Biesemans, S. (eds) Simulation of Semiconductor Processes and Devices 1998. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6827-1_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6827-1_37

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7415-9

  • Online ISBN: 978-3-7091-6827-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics