Skip to main content

Experimental Subarachnoid Haemorrhage Models in Rats

  • Conference paper
Research and Publishing in Neurosurgery

Part of the book series: Acta Neurochirurgica Supplements ((NEUROCHIRURGICA,volume 83))

Summary

There is no comprehensive and reliable model available in small animals that are suitable for the study of subarachnoid haemorrhage (SAH). In the study we reviewed the advantages and disadvantages of available SAH models in rats and presented our model.

Experimental SAH was induced in a group of 350–450 g Sprague- Dawley rats. A 2 mm-diameter burr hole was drilled and, working under a microscope, haemorrhage was produced by transclival puncture of the basilar artery with a 20 μm thick piece of glass. The rats were assigned to either the experimental group (n: 7) or the control group (n: 7). Local cerebral blood flow (LCBF), intracranial pressure (ICP), and cerebral perfusion pressure (CPP) were measured for 60 min after SAH, after which the rats were decapitated. Microscopic examinations were done on three different segments of the basilar artery.

There was a significant and sharp drop in LCBF just after SAH was induced (56.17 ± 12.80 mlLD/min/100 g and 13.57 ± 5.85 mlLD/min/100 g for baseline and post-SAH, respectively; p < 0.001), the flow slowly increased by the end of the experiment but never recovered to pre-SAH values (43,63 ±7.6 mlLD/min/ 100 g, p < 0.05). ICP (baseline 7.33 ± 0.8 mmHg) increased acutely to 70.6 ± 9.2 mmHg, and also returned to normal levels by 60 min after SAH. CPP (baseline 75.1 ± 4.9 mmHg) dropped accordingly (to 21.0 ± 6.3 mmHg) and then increased, reaching 70.1 ± 4.9 mmHg at 60 min after SAH. Examinations of the arteries revealed decreased inner luminal diameter and distortion of the elastica layer. We present an inexpensive and reliable model of SAH in the rat that allows single and multiple haemorrhages and to study the early and late course of pathological changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alkan T, Kahveci N (1999) Sicanlarda anatomic, patolojik ve norolojik olarak vertebrobasilar arter okluzyon yontemlerinin arastinlmasi.Bursa Devlet Hastahanesi Bulteni 14: 153–158.

    Google Scholar 

  2. Alkan T, Tureyen K, Ulutas M, Kahveci N, Goren B, Korfali E, Ozliik K (2001) Acute and delayed vasoconstriction after subarachnoid hemorrhage: local cerebral blood flow, histopathol- ogy, and morphology in the rat basilar artery. Arch Physiol Biochem 109: 145–153.

    Article  PubMed  CAS  Google Scholar 

  3. Asano T, Sano K (1977) Pathogenetic role of no reflow phenomenon in experimental subarachnoid hemorrhage in dogs. J Neurosurg 46: 454–466.

    Article  PubMed  CAS  Google Scholar 

  4. Baker KF, Zervas NT, Pile-Spellman J, Vacanti FX, Miller D (1987) Angiographic evidence of basilar artery constriction in the rabbit: a new model of vasospasm. Surg Neurol 27: 107–112.

    Article  PubMed  CAS  Google Scholar 

  5. Barry KJ, Gogjian MA, Stein BM (1979) Small animal model for investigation of subarachnoid hemorrhage and cerebral vasospasm. Stroke 10: 538–541.

    Article  PubMed  CAS  Google Scholar 

  6. Barth KN, Onesti ST, Krauss WE, Solomon RA (1992) A simple and reliable technique to monitor intracranial pressure in the rat: technical note. Neurosurg 30: 138–140.

    Article  CAS  Google Scholar 

  7. Bederson JB, Germano IM, Guarino L (1995) Cortical blood flow and cerebral perfusion pressure in a new noncraniotomy model of subarachnoid hemorrhage in the rat. Stroke 26: 1086–1091.

    Article  PubMed  CAS  Google Scholar 

  8. Bederson JB, Levy AL, Ding WH, Kahn R, DiPerna CA, Jenkins AL, Vallabhajosyula P (1998) Acute vasoconstriction after subarachnoid hemorrhage. Neurosurg 42: 352–362.

    Article  CAS  Google Scholar 

  9. Bevan JA, Bevan RO, Frazee JG (1987) Functional arterial changes in chronic cerebrovasospasm in monkeys: an in vitro assessment of the contribution to arterial narrowing. Stroke 18: 472–481.

    Article  PubMed  CAS  Google Scholar 

  10. Boisvert DPJ, Weir BKA, Overton TR, Reiffenstein RJ, Grace MGA (1979) Cerebrovascular responses to subarachnoid blood and serotonin in the monkey. J Neurosurg 50: 441–448.

    Article  PubMed  CAS  Google Scholar 

  11. Brawley BW, Strandes DE, Kely WA (1968) The biphasic response of cerebral vasospasm in experimental subarachnoid hemorrhage. J Neurosurg 28: 1–8.

    Article  PubMed  CAS  Google Scholar 

  12. Clower BR, Smith RR, Haining JL, Lockard J (1981) Constrictive endarteropathy following experimental subarachnoid hemorrhage. Stroke 12: 501–508.

    Article  PubMed  CAS  Google Scholar 

  13. Delgado TJ, Arbab MA, Wgberg J, Svengaard NA (1988) The role of vasopressin in acute cerebral vasospasm: effect on spasm of vasopressin antagonist or vasopressin antiserum. J Neurosurg 68: 266–273.

    Article  PubMed  Google Scholar 

  14. Delgado TJ, Brismar J, Svengaard NA (1985) Subarachnoid hemorrhage in the rat: angiography and fluorescence microscopy of the major cerebral arteries. Stroke 16: 595–602.

    Article  PubMed  CAS  Google Scholar 

  15. Delgado TJ, NH, Svengaard NA (1986) Subarachnoid hemorrhage in the rat. Cerebral blood flow and glucose metabolism after selective lesions of the catecholamine systems in the brainstem. J Cereb Blood Flow Metab 6: 600–606.

    CAS  Google Scholar 

  16. Delgado-Zygmunt TJ, Arbab MA, Shiokawa Y, Svendgaard NA (1992) A primate model for acute and late cerebral vasospasm: angiographic findings. Acta Neurochir (Wien) 118: 130–136.

    Article  CAS  Google Scholar 

  17. Duff TA, Louie J, Feilbach JA (1988) Erythrocytes are essential for development of cerebral vasculopathy resulting from subarachnoid hemorrhage in the cat. Stroke 19: 68–72.

    Article  PubMed  CAS  Google Scholar 

  18. Echlin F (1971) Experimental vasospasm, acute and chronic, due to blood in the subarachnoid space. J Neurosurg 35: 646–656.

    Article  PubMed  CAS  Google Scholar 

  19. Edwards DH, Byrne JV, Griffith TM (1992) The effect of chronic subarachnoid hemorrhage on basal endothelium- derived relaxing factor activity in intrathecal cerebral arteries. J Neurosurg 76: 830–837.

    Article  PubMed  CAS  Google Scholar 

  20. Espinosa F, Weir B, Shnitka T (1986) Electron microscopy of simian cerebral arteries after subarachnoid hemorrhage and after the injection of horseradish peroxidase. Neurosurg 19: 935–945.

    Article  CAS  Google Scholar 

  21. Faraci FM, Brian JE (1994) Nitric oxide and the cerebral circulation. Stroke 25: 692–703.

    Article  PubMed  CAS  Google Scholar 

  22. Findlay JM, Weir BK, Kanamaru K, Espinosa F (1989) Arterial wall changes in cerebral vasospasm. Neurosurg 25: 736–746.

    Article  CAS  Google Scholar 

  23. Fischer CM, Kistler JP, Davis JM (1980) Relation of cerebral vasospasm to subarachnoid hemorrhage visualized by computerized tomographic scanning. Neurosurg 6: 1–9.

    Article  Google Scholar 

  24. Fitch W, Pickard JD, Tamura A, Graham DI (1988) Effects of hypotension induced with sodium nitroprusside on the cerebral circulation before, and one week after, the subarachnoid injection of blood. J Neurol Neurosurg Psychiatry 51: 88–93.

    Article  PubMed  CAS  Google Scholar 

  25. Handa Y, Weir BKA, Nosko M (1987) The effect of timing of clot removal on chronic vasospasm in a primate model. J Neurosurg 67: 558–564.

    Article  PubMed  CAS  Google Scholar 

  26. Hashi K, Meyer JS, Shinmaru S, Welch KMA, Teraura T (1972) Haemodynamic and metabolic changes in experimental subarachnoid hemorrhage in monkeys. Eur Neurol 8: 32–37.

    Article  PubMed  CAS  Google Scholar 

  27. Iadecola C (1993) Regulation of the cerebral microcirculati during neural activity: is nitric oxide the missing link? Trends Neurosci 16: 206–214.

    Article  PubMed  CAS  Google Scholar 

  28. Jackowski A, Crockard A, Burnstock G, Russel RR, Kristek F (1990) The time course of intracranial pathophysiological changes following experimental subarachnoid hemorrhage in the rat. J Cereb Blood Flow Met 10: 835–849.

    Article  CAS  Google Scholar 

  29. Jakubowski J, Bell BA, Symon L, Zawirski MB, Francis DM (1982) A primate model of subarachnoid hemorrhage: changes in regional cerebral blood flow, autoregulation, carbon dioxide reactivity, and central conduction time. Stroke 13: 601–611.

    Article  PubMed  CAS  Google Scholar 

  30. Jakubowski J, McCleery WNC, Todd JH, Smart RC (1976) Cerebral blood flow changes in acute experimental hmorrhagic vasospasm. Acta Neurochir (Wien) 34: 265–268.

    Article  CAS  Google Scholar 

  31. Kader A, Krauss WE, Onesti ST, Elliot JP, Solomon RA (1990) Chronic cerebral blood flow changes following experimental subarachnoid hemorrhage in rats. Stroke 21: 577–581.

    Article  PubMed  CAS  Google Scholar 

  32. Kajita Y, Suzuki Y, Oyama H, Tanazawa T, Takayashu M, Shibuya M, Sugita K (1994) Combined effect of L-arginine and superoxide dismutase on the spastic basilar artery after subarachnoid hemorrhage in dogs. J Neurosurgery 80: 476–483.

    Article  CAS  Google Scholar 

  33. Kaplan B, Brint S, Tanabe J, Jacewics M, Wang X-J, Pulsinelli W (1991) Temporal thresholds for neocartical infarction in rats subjected to reversible focal cerebral ischemia. Stroke 22: 1032–1039.

    Article  PubMed  CAS  Google Scholar 

  34. Kassell NF, Haley EC Jr, Apperson-Hansen C, Alves WM (1996) Randomized, double-blind, vehicle-controlled trial of tirilazad mesylate in patients with aneurysmal subarachnoid hemorrhage: a cooperative study in Europe, Australia, and New Zealand. J Neurosurg 84: 221–228.

    Article  PubMed  CAS  Google Scholar 

  35. Kuyama H, Ladds A, Branston NM, Nitta M, Symon L (1984) An experimental study of acute subarachnoid hemorrhage in baboons: changes in cerebral blood flow, electrical activity and water content. J Neurol Neurosurg Psychiatry 47: 354–364.

    Article  PubMed  CAS  Google Scholar 

  36. Liszczak TM, Black PM, Tzouras A, Foley L, Zervas NT (1984) Morphological changes of the basilar artery, ventricles, and choroid plexus after experimental subarachnoid hemorrhage. J Neurosurg 61: 486–493.

    Article  PubMed  CAS  Google Scholar 

  37. Liszczak TM, Varsos VG, Black PM, Kistler JP, Zervas NT (1983) Cerebral arterial constriction after experimental subarachnoid hemorrhage is associated with blood components within the arterial wall. J Neurosurg 58: 18–26.

    Article  PubMed  CAS  Google Scholar 

  38. MacDonald RL (1995) Cerebral vasospasm. Neurosurgery Q 5: 73–97.

    Article  Google Scholar 

  39. Macdonald RL, Weir BK (1991) A review of hemoglobin and the pathogenesis of cerebral spasm. Stroke 22: 971–982.

    Article  PubMed  CAS  Google Scholar 

  40. Macdonald RL, Weir BK, Grace MG, Martin TP, Doi M, Cook DA (1991) Morphometric analysis of monkey cerebral arteries exposed in vivo to whole blood, oxyhemoglobin, met- hemoglobin, and bilirubin. Blood Vessels 28: 498-510.

    PubMed  CAS  Google Scholar 

  41. Macdonald RL, Weir BK, Runzer TD, Grace MG, Findlay JM, Saito K, Cook DA, Mielke BW, Kanamaru K (1991) Etiology of cerebral vasospasm in primates. J Neurosurg 45: 415–424.

    Google Scholar 

  42. Mayberg MR, Okada T, Bark DH (1990) The role of hemoglobin in arterial narrowing after subarachnoid hemorrhage. J Neurosurg 72: 634–640.

    Article  PubMed  CAS  Google Scholar 

  43. Megyesi JF, Vollrath B, Cook DA, Findlay JM (2000) In vivo animal models of cerebral vasospasm. Neurosurg 46: 448–461.

    Article  CAS  Google Scholar 

  44. Megyesi JF, Findlay JM, Vollrath B, Cook DA, Chen MH (1997) In vivo angioplasty prevents the development of vasospasm in canine carotid arteries: pharmacological and morphological analyses. Stroke 28: 1216–1224.

    Article  PubMed  CAS  Google Scholar 

  45. Megyesi JF, Vollrath B, Cook DA, Chen MH, Findlay JM (1999) Long-term effects of in vivo angioplasty in normal and vasospastic canine carotid arteries: pharmacological and morphological analyses. J Neurosurg 91: 100–108.

    Article  PubMed  CAS  Google Scholar 

  46. Mendelow AD, McCalden TA, Hattingh J, Coull A, Rosendorff C, Eidelman BH. (1981) Cerebrovascular reactivity and metabolism after subarachnoid hemorrhage in baboons. Stroke 12: 58–65.

    Article  PubMed  CAS  Google Scholar 

  47. Nakagomi T, Kassell NF, Sasaki T, Fujiwara S, Lehman RM, Tomer JC (1987) Impairment of endothelium-dependent vasodilation induced by acetylcholine and adenosine triphosphate following experimental subarachnoid hemorrhage. Stroke 18: 482–489.

    Article  PubMed  CAS  Google Scholar 

  48. Naveri L, Stromberg C, Saavedra JM (1994) Angiotensin IV reverses the acute cerebral blood flow reduction after experimental subarachnoid hemorrhage in the rat. J Cereb Blood Flow Metab 14: 1096–1099.

    Article  PubMed  CAS  Google Scholar 

  49. Nosko M, Weir BKA, Lunt A (1987) Effect of clot removal at 24 hours on chronic vasos pasm after SAH in the primate model. J Neurosurg 6: 416–422.

    Google Scholar 

  50. Petruk KC, West GR, Marriott MR, Mclntyre JW, Overton TR, Weir BK (1972) Cerebral blood flow following induced subarachnoid hemorrhage in the monkey. J Neurosurg 37: 316–324.

    Article  PubMed  CAS  Google Scholar 

  51. Schwartz AY, Sehba F, Bederson J (2000) Decreased nitric oxide availability contributes to acute cerebral ischemia after subarachnoid hemorrhage. Neurosurg 47: 208–215.

    CAS  Google Scholar 

  52. Sehba F, Ding WH, Chereshnev I, Bederson JB (1999) Effects of S-nitrosoglutathione on acute vasoconstriction and glutamate release after subarachnoid hemorrhage. Stroke 30: 1955–1961.

    Article  PubMed  CAS  Google Scholar 

  53. Seifert V, Stolke D, Reale E (1989) Ultrastructural changes of the basilar artery following experimental subarachnoid hemorrhage. A morphological study on the pathogenesis of delayed cerebral vasospasm. Acta Neurochir (Wien) 100: 164–171.

    CAS  Google Scholar 

  54. Sobey CG, Faraci FM (1998) Subarachnoid haemorrhage: what happens to the cerebral arteries? Clin Exp Pharmacol Physiology 25: 867–876.

    Article  CAS  Google Scholar 

  55. Solomon RA, Antunes JL, Chen RY, Bland L, Chien S (1985) Decrease in cerebral blood flow in rats after experimental subarachnoid hemorrhage: a new animal model. Stroke 16: 58–64.

    Article  PubMed  CAS  Google Scholar 

  56. Stoodley M, Weihl CC, Zhang Z, Lin G, Johns LM, Kowalczuk BA, Ghadge G, Roos RP, Macdonald RL (2000) Effect of adenovirus-mediated nitric oxide synthase gene transfer on vasospasm after experimental subarachnoid hemorrhage. J Neurosurg 93: 463–470.

    Article  PubMed  CAS  Google Scholar 

  57. Swift DM and Solomon RA (1988) Subarachnoid hemorrhage fails to produce vasculopathy or chronic flow changes in rats. Stroke 19: 878–882.

    Article  PubMed  CAS  Google Scholar 

  58. Taneba Y, Sakata K, Yamada H, Ito T, Takoda Y (1978) Cerebral vasospasm and ultrastructural changes in the arterial wall. An experimental study. J Neurosurg 49: 229–239.

    Google Scholar 

  59. Toda N (1988) Hemolysate inhibits cerebral artery relaxation. J Cereb Blood Flow Metab 8: 46–53.

    Article  PubMed  CAS  Google Scholar 

  60. Toda N, Ayajiki K, Okamura T (1993) Endothelial modulation of contractions caused by oxyhemoglobin and NG-nitro-L- arginine in isolated dog and monkey cerebral arteries. Stroke 24: 1584–1589.

    Article  PubMed  CAS  Google Scholar 

  61. Toda N, Shimizu K, Ohta T (1980) Mechanism of cerebral arterial contraction induced by blood constituents. J Neurosurg 53:312–322.

    Article  PubMed  CAS  Google Scholar 

  62. Trojanowski T (1982) Experimental subarachnoid hemorrhage, I: a new approach to subarachnoid haemorrhage in cats. Acta Neurochir (Wien) 62: 171–175.

    Article  CAS  Google Scholar 

  63. Umansky F, Kaspi T, Shalit MN (1983) Regional cerebral blood flow in the acute stage of experimentally induced subarachnoid hemorrhage. J Neurosurg 58: 210–216.

    Article  PubMed  CAS  Google Scholar 

  64. Veelken JA, Laing RJC, Jakubowski J (1995) The Sheffield model of subarachnoid hemorrhage in rats. Stroke 26: 1279–1284.

    Article  PubMed  CAS  Google Scholar 

  65. Weir B, MacDonald RL (1993) Cerebral vasospasm. Clin Neu- rosurg 40: 40–55.

    CAS  Google Scholar 

  66. Yamaura I, Tani E, Mada Y, Inami N, Shindo H (1992) Endothelial in canine artery in vasospasm. J Neurosurg 76: 99–105.

    Article  PubMed  CAS  Google Scholar 

  67. Yokoto M, Tani E, Maeda Y, Kokubu K (1987) Effects of 5- Lipoxygenase inhibitor on experimental delayed cerebral vasospasm. Stroke 18: 512–518.

    Article  Google Scholar 

  68. Zealonga E, Weunstein PR, Carlson S, Cummins R (1992) Reversible middle cerebral artery occlusion without craniectomy in rats: Stroke 20: 84–91.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag/Wien

About this paper

Cite this paper

Alkan, T., Korfali, E., Kahveci, N. (2002). Experimental Subarachnoid Haemorrhage Models in Rats. In: Kanpolat, Y. (eds) Research and Publishing in Neurosurgery. Acta Neurochirurgica Supplements, vol 83. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6743-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6743-4_11

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7399-2

  • Online ISBN: 978-3-7091-6743-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics