Skip to main content

Mechanisms of synaptic pathology in Alzheimer’s disease

  • Conference paper
Ageing and Dementia

Part of the book series: Journal of Neural Transmission. Supplementa ((NEURAL SUPPL,volume 53))

Summary

Neurodegenerative disorders are characterized by damage to selective neuronal populations that could be followed or preceded by synaptic injury. Therefore, specific mutations in and other alterations of synaptic proteins might lead to particular neurodegenerative diseases. The predominant hypothesis is that these mutations result in an increased production of amyloid β-protein 1–42 which acts as a neurotoxin. However, it could also be postulated that amyloid precursor protein might play an important role in synaptic function and neuronal maintenance, and that its abnormal activity may lead to neurodegeneration. Recent studies have shown that amyloid precursor protein has an important role in regulating glutamate levels at the synaptic site by modulating the activity of glutamate transporters. The objectives of this manuscript are to highlight recent data supporting the hypothesis that neurodegeneration in Alzheimer’s disease might be the combined result of abnormal protective activity of amyloid precursor protein and amyloid β-protein toxicity.

This work was supported by NIH/NIA Grants AG10689, AG05131 and by Grants from the Alzheimer’s Disease and Related Disorders Association, Inc. and the Ruth K. Broad Foundation and EBEWE Research Iniciative

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arai H, Lee VM-Y, Messinger ML, Greenberg BD, Lowery DE, Trojanowski JQ (1991) Expression patterns of β-amyloid precursor protein (β-APP) in neural and nenneural tissues from Alzheimer’s disease and control subjects. Ann Neurol 30: 686–693

    Article  PubMed  CAS  Google Scholar 

  • Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT (1992a) Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 42: 631–639

    Article  PubMed  CAS  Google Scholar 

  • Arriagada PV, Marzloff K, Hyman BT (1992b) Distribution of Alzheimer-type pathologic changes in nondemented elderly individuals matches the pattern in Alzheimer’s disease. Neurology 42: 1681–1688

    Article  PubMed  CAS  Google Scholar 

  • Beach TG, Walker R, McGeer EG (1989) Patterns of gliosis in Alzheimer’s disease and aging cerebrum. Glia 2: 420–436

    Article  PubMed  CAS  Google Scholar 

  • Behl C, Davis J, Lesley R, Schubert D (1994) Hydrogen peroxide mediates amyloid β protein toxicity. Cell 77: 817–827

    Article  PubMed  CAS  Google Scholar 

  • Borchelt DR, Thinakaran G, Eckman CB, Lee MK, Davenport F, Ratovitsky T, Prada CM, Kim G, Seekins S, Yager D (1996) Familial Alzheimer’s disease-linked presenilin 1 variants elevate Aβ 1-42/1-40 ratio in vitro and in vivo. Neuron 17: 1005–1013

    Article  PubMed  CAS  Google Scholar 

  • Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82: 239–259

    Article  PubMed  CAS  Google Scholar 

  • Butterfield DA, Hensley K, Harris M, Mattson MP, Carney J (1994) β-Amyloid peptide free radical fragments initiate synaptosomal lipoperoxidation in a sequence-specific fashion: implications to Alzheimer’s disease. Biochem Biophys Res Commun 200: 710–715

    Article  PubMed  CAS  Google Scholar 

  • Casado M, Bendahan A, Zafra F, Danbolt NC, Aragon C, Gimenez C, Kanner BI (1993) Phosphorylation and modulation of brain glutamate transporters by protein kinase C. J Biol Chem 268: 27313–27317

    PubMed  CAS  Google Scholar 

  • Citron M, Oltersdorf T, Haass C, McConlogue L, Hung AY, Seubert P, Vigo-Pelfrey C, Liberburg I, Selkoe DJ (1992) Mutation in the β-amyloid precursor protein in familial Alzheimer’s disease increases β-protein production. Nature 360: 672–674

    Article  PubMed  CAS  Google Scholar 

  • Citron M, Westaway D, Xia W, Carlson G, Diehl T, Levesque G, Johnson-Wood K, Lee M, Subert P, Davis A, Kholodenko D, Motter R, Sherrington R, Perry B, Hong Y, Strome R, Lieberburg I, Rommens J, Kim S, Schenk D, Fraser P, St. George Hyslop P, Selkoe D (1997) Mutant presenilins of Alzheimer’s disease increase production of 42-residue amyloid β-protein in both transfected cells and transgenic mice. Nature Med 3: 67–72

    Article  PubMed  CAS  Google Scholar 

  • Clark RF, Goate AM (1993) Molecular genetics of Alzheimer’s disease. Arch Neurol 50: 1164–1172

    Article  PubMed  CAS  Google Scholar 

  • Cole GM, Masliah E, Huynh TV, DeTeresa R, Terry RD, Okudea C, Saitoh T (1989) An antiserum against amyloid β-protein precursor detects a unique peptide in Alzheimer brain. Neurosci Lett 100: 340–346

    Article  PubMed  CAS  Google Scholar 

  • Collaborative Group (1995) The structure of the presenilin 1 (S182) gene and identification of six novel mutations in early onset AD families. Alzheimer’s Disease Collaborative Group. Nature Genet 11: 219–222

    Google Scholar 

  • Cowburn R, Hardy J, Roberts P, Briggs R (1988) Presynaptic and postsynaptic glutamatergic function in Alzheimer’s disease. Neurosci Lett 86: 109–113

    Article  PubMed  CAS  Google Scholar 

  • Cowburn RF, Hardy JA, Roberts PJ (1990) Glutamatergic neurotransmission in Alzheimer’s disease. Biochem Soc Trans 18: 390–392

    PubMed  CAS  Google Scholar 

  • Cras P, Kawai M, Lowery D, Gonzalez-DeWhitt P, Greenberg B, Perry G (1991) Senile plaque neurites in Alzheimer disease accumulate amyloid precursor protein. Proc Natl Acad Sci USA 88: 7552–7556

    Article  PubMed  CAS  Google Scholar 

  • Cummings BJ, Cotman CW (1995) Image analysis of β-amyloid load in Alzheimer’s disease and relation to dementia severity. Lancet 346: 1524–1528

    Article  PubMed  CAS  Google Scholar 

  • De Strooper B, Craessaerts K, Dewachter I, Moechars D, Greenberg B, Van Leuven F, Van Den Berghe H (1995) Missorting of amyloid precursor protein in MDCK cells. J Biol Chem 270: 4058–4065

    Article  PubMed  Google Scholar 

  • DeKosky ST, Scheff SW (1990) Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity. Ann Neurol 27: 457–464

    Article  Google Scholar 

  • Dickson DW, Farlo J, Davies P, Crystal H, Fuld P, Yen SC (1988) Alzheimer disease. A double immunohistochemical study of senile plaques. Am J Pathol 132: 86–101

    CAS  Google Scholar 

  • Eccles JC (1981) The modular operation of the cerebral neocortex considered as the material basis of mental events. Neuroscience 6: 1839–1856

    Article  PubMed  CAS  Google Scholar 

  • Eccles JC (1984) The cerebral neocortex: a theory of its operation. In: Jones EG, Peters A (eds) Cerebral cortex, vol 2. Functional properties of cortical cells. Plenum Press, New York, pp 1–38

    Google Scholar 

  • Furukawa K, Sopher BL, Rydel RE, Begley JG, Pham DG, Martin GM, Fox M, Mattson MP (1996) Increased activity regulating and neuroprotective efficacy of α-secretase-derived secreted amyloid precursor protein conferred by a c-terminal heparin-binding domain. J Neurochem 67: 1882–1892

    Article  PubMed  CAS  Google Scholar 

  • Games D, Adams D, Alessandrini R, Barbour R, Berthelette P, Blackwell C, Carr T, Clemes J, Donaldson T, Gillespie F, Guido T, Hagopian S, Johnson-Wood K, Khan K, Lee M, Leibowitz P, Lieberburg I, Little S, Masliah E, McConlogue L, Montoya-Zavala M, Mucke L, Paganini L, Penniman E, Power M, Schenk D, Seubert P, Snyder B, Soriano F, Tan H, Vitale J, Wadsworth S, Wolozin B, Zhao J (1995) Alzheimer-type neuropathology in transgenic mice overexpressing V717F β-amyloid precursor protein. Nature 373: 523–527

    Article  PubMed  CAS  Google Scholar 

  • Games D, Masliah E, Lee M, Johnson-Wood K, Schenk D (1997) Neurodegenerative Alzheimer-like pathology in PDAPP 717V→F transgenic mice. In: Hyman BT, Duyckaerts C, Christen Y (eds) Connections, cognition and Alzheimer’s disease. Springer, Berlin Heidelberg New York Tokyo, pp 105–119

    Chapter  Google Scholar 

  • Goate A, Chartier-Harlin M-C, Mullan M, Brown J, Crawford F, Fidani L, Guiffra L, Haynes A, Irving N, James L, Mant R, Newton P, Rooke K, Roques P, Talbot C, Williamson R, Rossor M, Owen M, Hardy J (1991) Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 349: 704–706

    Article  PubMed  CAS  Google Scholar 

  • Golde TE, Estus S, Younkin LH, Selkoe DJ, Younkin SG (1992) Processing of the amyloid protein precursor to potentially amyloidogenic derivatives. Science 255: 728–730

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Isla T, Price JL, McKeel DW Jr, Morris JC, Growdon JH, Hyman BT (1996) Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease. J Neurosci 16: 4491–4500

    PubMed  CAS  Google Scholar 

  • Goodman Y, Mattson MP (1994) Secreted forms of β-amyloid precursor protein protect hippocampal neurons against amyloid β-peptide-induced oxidative injury. Exp Neurol 128: 1–12

    Article  PubMed  CAS  Google Scholar 

  • Haass C, Koo E, Capell A, Teplow D, Selkoe DJ (1995) Polarized sorting of β-amyloid precursor protein and its proteolytic products in MDCK cells is regulated by two independent signals. J Cell Biol 128: 537–547

    Article  PubMed  CAS  Google Scholar 

  • Harris ME, Wang Y, Pedigo NWJr, Hensley K, Buttefield DA, Carney JM (1996) Amyloid β peptide (25–35) inhibits Na+-dependent glutamate uptake in rat hippocampal astrocyte cultures. J Neurochem 67: 277–286

    Article  PubMed  CAS  Google Scholar 

  • Heinonen O, Soininen H, Sorvari H, Kosunene O, Paljarvi L, Koivisto E, Riekkinen PJ (1995) Loss of synaptophysin-like immunoreactivity in the hippocampal formation is an early phenomenon in Alzheimer’s disease. Neuroscience 64: 375–384

    Article  PubMed  CAS  Google Scholar 

  • Hof PR, Morrison JH (1991) Neocortical neuronal subpopulations labeled by a monoclonal antibody to calbindin exhibit differential vulnerability in Alzheimer’s disease. Exp Neurol 111: 293–301

    Article  PubMed  CAS  Google Scholar 

  • Hof PR, Morrison JH (1994) The cellular basis of cortical disconnection in Alzheimer disease and related dementing conditions. In: Terry RD, Katzman R, Bick KL (eds) Alzheimer disease. Raven Press, New York, pp 197–230

    Google Scholar 

  • Hyman BT, Van Hoesen GW, Kromer LJ, Damasio AR (1986) Perforant pathway changes in the memory impairment of Alzheimer’s disease. Ann Neurol 20: 472–481

    Article  PubMed  CAS  Google Scholar 

  • Iwatsubo T, Odaka A, Suzuki N, Mizusawa H, Nukina N, Ihara I (1994) Visualization of A beta 42(43) and A beta 40 in senile plaques with end-specific A beta monoclonals: evidence that an initially deposited species in A beta 42(43). Neuron 13: 45–53

    Article  PubMed  CAS  Google Scholar 

  • Kovacs DM, Fausett HJ, Page KJ, Kim TW, Moir RD, Merriam DE, Hollister RD, Hallmark OG, Mancini R, Felsenstein KM (1996) Alzheimer-associated presenilins 1 and 2: neuronal expression in brain and localization to intracellular membranes in mammalian cells. Nature Med 2: 224–229

    Article  PubMed  CAS  Google Scholar 

  • Lassmann H, Weiler R, Fischer P, Bancher C, Jellinger K, Floor E, Danielczyk W, Seitelberger F, Winkler H (1992) Synaptic pathology in Alzheimer’s disease: immunological data for markers of synaptic and large dense-core vesicles. Neuroscience 46: 1–8

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Erikson C, Brun A (1996) Cortical synaptic changes and gliosis in normal aging, Alzheimer’s disease and frontal lobe degeneration. Dementia 7: 128–134

    PubMed  CAS  Google Scholar 

  • Lo A, Haass C, Wagner S, Teplow D, Sisodia S (1994) Metabolism of the “Swedish” amyloid precursor protein variant in Madin-Darby canine kidney cells. J Biol Chem 269: 30966–30973

    PubMed  CAS  Google Scholar 

  • Lorenzo A, Yankner BA (1994) β-Amyloid neurotoxicity requires fibril formation and is inhibited by Congo red. Proc Natl Acad Sci USA 91: 12243–12247

    Article  PubMed  CAS  Google Scholar 

  • Mark RJ, Hensley K, Butterfield DA, Mattson MP (1995) Amyloid β-peptide impairs ionmotive ATPase activities: evidence for a role in loss of neuronal Ca2+ homeostasis and cell death. J Neurosci 15: 6239–6249

    PubMed  CAS  Google Scholar 

  • Martin LJ, Cork LC, Koo EH, Sisodia SS, Weidemann A, Beyreuther K, Masters C, Price DL (1989) Localization of amyloid precursor protein (APP) in brains of young and aged monkeys. Soc Neurosci Abstr 15: 23

    Google Scholar 

  • Martin LJ, Pardo CA, Cork LC, Price DL (1994) Synaptic pathology and glial reponses to neuronal injury precede the formation of senile plaques and amyloid deposits in the aging cerebral cortex. Am J Pathol 145: 1358–1381

    PubMed  CAS  Google Scholar 

  • Masliah E (1995) Mechanisms of synaptic dysfunction in Alzheimer’s disease. Histol Histopathol 10: 509–519

    PubMed  CAS  Google Scholar 

  • Masliah E, Terry R (1994) The role of synaptic pathology in the mechanisms of dementia in Alzheimer’s disease. Clin Neurosci 1: 192–198

    Google Scholar 

  • Masliah E, Mallory M, Hansen L, Alford M, Albright T, Terry R, Shapiro P, Sundsmo M, Saitoh T (1991) Immunoreactivity of CD45, a protein phosphotyrosine phosphatase, in Alzheimer disease. Acta Neuropathol 83: 12–20

    Article  PubMed  CAS  Google Scholar 

  • Masliah E, Mallory M, Ge N, Saitoh T (1992a) Amyloid precursor protein is localized in growing neurites of neonatal rat brain. Brain Res 593: 323–328

    Article  PubMed  CAS  Google Scholar 

  • Masliah E, Mallory M, Hansen L, Alford M, DeTeresa R, Terry R, Baudier J, Saitoh T (1992b) Localization of amyloid precursor protein in GAP43-immunoreactive aberrant sprouting neurites in Alzheimer’s disease. Brain Res 574: 312–316

    Article  PubMed  CAS  Google Scholar 

  • Masliah E, Mallory M, Hansen L, Alford M, DeTeresa R, Terry R (1993) An antibody against phosphorylated neurofilaments identifies a subset of damaged association axons in Alzheimer’s disease. Am J Pathol 142: 871–882

    PubMed  CAS  Google Scholar 

  • Masliah E, Mallory M, Hansen L, DeTeresa R, Alford M, Terry R (1994) Synaptic and neuritic alterations during the progression of Alzheimer’s disease. Neurosci Lett 174: 67–72

    Article  PubMed  CAS  Google Scholar 

  • Masliah E, Alford M, DeTeresa R, Mallory M, Hansen L (1996a) Deficient glutamate transport is associated with neurodegeneration in Alzheimer’s disease. Ann Neurol 40: 759–766

    Article  PubMed  CAS  Google Scholar 

  • Masliah E, Sisk A, Mallory M, Mucke L, Schenk D, Games D (1996b) Comparison of neurodegenerative pathology in transgenic mice overexpressing V717F β-amyloid precursor protein and Alzheimer’s disease. J Neurosci 16: 5795–5811

    PubMed  CAS  Google Scholar 

  • Masliah E, Westland CE, Abraham CR, Mallory M, Veinbergs I, Rockenstein EM, Mucke L (1997) Amyloid precursor protein protects neurons of transgenic mice against acute and chronic excitotoxic injuries in vivo. Neuroscience 78: 135–141

    Article  PubMed  CAS  Google Scholar 

  • Masters CL, Multhaup G, Simms G, Pottglesser J, Martins RN, Beyreuther K (1985) Neuronal origin of a cerebral amyloid: neurofibrillary tangles of Alzheimer’s disease contain the same protein as the amyloid of plaque cores and blood vessels. EMBO J 4: 2757–2763

    PubMed  CAS  Google Scholar 

  • Mattson MP, Cheng B, Culwell AR, Esch FS, Lieberburg I, Rydel RE (1993a) Evidence for excitoprotective and intraneuronal calcium-regulating roles for secreted forms of the β-amyloid precursor protein. Neuron 10: 243–254

    Article  PubMed  CAS  Google Scholar 

  • Mattson MP, Tomaselli KJ, Rydel RE (1993b) Calcium-destabilizing and neurodegenerative effects of aggregated β-amyloid peptide are attenuated by basic FGF. Brain Res 621: 35–49

    Article  PubMed  CAS  Google Scholar 

  • Mucke L, Masliah E, Johnson WB, Ruppe MD, Rockenstein EM, Forss-Petter S, Pietropaolo M, Mallory M, Abraham CR (1994) Synaptotrophic effects of human amyloid β protein precursors in the cortex of transgenic mice. Brain Res 666: 151–167

    Article  PubMed  CAS  Google Scholar 

  • Mucke L, Abraham CR, Ruppe MD, Rockenstein EM, Toggas SM, Alford M, Masliah E (1995) Protection against HIV-1 gp 120-induced brain damage by neuronal over-expression of human amyloid precursor protein (hAPP). J Exp Med 181: 1551–1556

    Article  PubMed  CAS  Google Scholar 

  • Pericak-Vance MA, Bass MP, Yamaoka LH, Gaskell PC, Scott WK, Terwedow HA, Menold MM, Conneally PM, Small GW, Vance JM, Saunders AM, Roses AD, Haines JL (1997) Complete genomic screen in late-onset familial Alzheimer disease. JAMA 278: 1237–1241

    Article  PubMed  CAS  Google Scholar 

  • Perry EK, Perry RH, Blessed G, Tomlinson BE (1977) Neurotransmitter enzyme abnormalities in senile dementia: CAT and GAD activities in necropsy tissue. J Neurol Sci 34: 247–265

    Article  PubMed  CAS  Google Scholar 

  • Perry EK, McKeith I, Thompson P (1991) Topography, extent, and clinical relevance of neurochemical deficits in dementia of Lewy body type, Parkinson’s disease, and Alzheimer’s disease. Ann NY Acad Sci 640: 197–202

    PubMed  CAS  Google Scholar 

  • Price DL, Sisodia SS, Gandy SE (1995) Amyloid β amyloidosis in Alzheimer’s disease. Curr Opin Neurol 8: 268–274

    Article  PubMed  CAS  Google Scholar 

  • Rockenstein EM, McConlogue L, Tan H, Power M, Masliah E, Mucke L (1995) Levels and alternative splicing of amyloid β protein precursor (APP) transcripts in brains of APP transgenic mice and humans with Alzheimer’s disease. J Biol Chem 270: 28257–28267

    Article  PubMed  CAS  Google Scholar 

  • Rogers J, Luber-Narod J, Styren SD, Civin WH (1988) Expression of immune system-associated antigens by cells of the human central nervous system: relationship to the pathology of Alzheimer’s disease. Neurobiol Aging 9: 339–349

    Article  PubMed  CAS  Google Scholar 

  • Rothstein JD, Jin L, Dykes-Hoberg M, Kuncl RW (1993) Chronic inhibition of glutamate uptake produces a model of slow neurotoxicity. Proc Natl Acad Sci USA 90: 6591–6595

    Article  PubMed  CAS  Google Scholar 

  • Rothstein JD, Van Kammen M, Levey AI, Martin LJ, Kuncl RW (1995) Selective loss of glial glutamate trasporter GLT-1 in amyotrophic lateral sclerosis. Ann Neurol 38: 73–84

    Article  PubMed  CAS  Google Scholar 

  • Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, Kanai Y, Hediger MA, Wang Y, Schielke JP (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16: 675–686

    Article  PubMed  CAS  Google Scholar 

  • Saitoh T, Kang D, Mallory M, DeTeresa R, Masliah E (1997) Glial cells in Alzheimer’s disease: preferential effect of APOE risk on scattered microglia. Gerontology 43: 109–118

    Article  PubMed  CAS  Google Scholar 

  • Samuel W, Masliah E, Terry R (1994) Hippocampal connectivity and Alzheimer’s dementia: effects of pathology in a two-component model. Neurology 44: 2081–2088

    Article  PubMed  CAS  Google Scholar 

  • Saunders AM, Strittmatter WJ, Schmechel D, St. George-Hyslop PH, Pericak-Vance MA, Joo SH, Rosi BL, Gusella JF, Crapper-MacLachlan DR, Alberts MJ, Hulette C, Crain B, Goldgaber D, Roses AD (1993) Association of apolipoprotein E allele E4 with late-onset familial and sporadic Alzheimer’s disease. Neurology 43: 1467–1472

    Article  PubMed  CAS  Google Scholar 

  • Scott HL, Tannenberg AEG, Dodd PR (1995) Variant forms of neuronal glutamate trasporter sites in Alzheimer’s disease cerebral cortex. J Neurochem 64: 2193–2202

    Article  PubMed  CAS  Google Scholar 

  • Selkoe DJ (1989) Amyloid β protein precursor and the pathogenesis of Alzheimer’s disease. Cell 58: 611–612

    Article  PubMed  CAS  Google Scholar 

  • Selkoe DJ (1993) Physiological production of the β-amyloid protein and the mechanisms of Alzheimer’s disease. Trends Neurosci 16: 403–409

    Article  PubMed  CAS  Google Scholar 

  • Selkoe D (1994a) Cell biology of the amyloid β-protein precursor and the mechanisms of Alzheimer’s disease. Annu Rev Cell Biol 10: 373–403

    Article  PubMed  CAS  Google Scholar 

  • Selkoe DJ (1994b) Normal and abnormal biology of the β-amyloid precursor protein. Ann Rev Neurosci 17: 489–517

    Article  PubMed  CAS  Google Scholar 

  • Seubert P, Vigo-Pelfrey C, Esch F, Lee M, Dovey H, Davis D, Sinha S, Schlossmacher M, Whaley J, Swindlehurst C, McCormack R, Wolfert R, Selkoe D, Lieberburg I, Schenk D (1992) Isolation and quantification of soluble Alzheimer’s β-peptide from biological fluids. Nature 359: 325–327

    Article  PubMed  CAS  Google Scholar 

  • Shoji M, Golde TE, Ghiso J, Cheung TT, Estus S, Shaffer LM, Cai X-D, McKay DM, Tintner R, Frangione B, Younkin SG (1992) Production of the Alzheimer amyloid β protein by normal proteolytic processing. Science 258: 126–129

    Article  PubMed  CAS  Google Scholar 

  • Sisodia SS, Price DL (1995) Role of the β-amyloid protein in Alzheimer’s disease. FASEB J 9: 366–370

    PubMed  CAS  Google Scholar 

  • Sisodia SS, Koo EH, Beyreuther K, Unterbeck A, Price DL (1990) Evidence that β-amyloid protein in Alzheimer’s disease is not derived by normal processing. Science 248: 492–494

    Article  PubMed  CAS  Google Scholar 

  • Terry RD, Wisniewski HM (1970) The ultrastructure of the neurofibrillary tangle and the senile plaque. In: Wolstenholme GEW, O’Connor M (eds) Ciba Foundation Symposium on Alzheimer’s disease and related conditions. Churchill, London, pp 145–168

    Google Scholar 

  • Terry RD, Peck A, DeTeresa R, Schechter R, Horoupian DS (1981) Some morphometric aspects of the brain in senile dementia of the Alzheimer type. Ann Neurol 10: 184–192

    Article  PubMed  CAS  Google Scholar 

  • Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, Katzman R (1991) Physical basis of cognitive alterations in Alzheimer disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30: 572–580

    Article  PubMed  CAS  Google Scholar 

  • Terry RD, Hansen L, Masliah E (1994) Structural alterations in Alzheimer disease. In: Terry RD, Katzman R (eds) Alzheimer disease. Raven Press, New York, pp 179–196

    Google Scholar 

  • Voytko ML, Olton DS, Richardson RT, Gorman LK, Tobin JR, Price DL (1994) Basal forebrain lesions in monkeys disrupt attention but not learning and memory. J Neurosci 14: 167–186

    PubMed  CAS  Google Scholar 

  • Weiss JH, Pike CJ, Cotman CW (1994) Ca2+ channel blockers attenuate β-amyloid peptide toxicity to cortical neurons in culture. J Neurochem 62: 372–375

    Article  PubMed  CAS  Google Scholar 

  • Wragg M, Hutton M, Talbot C, Alzheimer’s Disease Collaborative Group (1996) Genetic association between intronic polymorphism in presenilin-1 gene and late-onset Alzheimer’s disease. Lancet 347: 509–512

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi H, Hirai S, Morimatso M, Shoji M, Ihara Y (1988) A variety of cerebral amyloid deposits in the brains of Alzheimer-type dementia demonstrated by β-protein immunostaining. Acta Neuropathol 76: 541–549

    Article  PubMed  CAS  Google Scholar 

  • Yankner BA (1996) Mechanisms of neuronal degeneration in Alzheimer’s disease. Neuron 16: 921–932

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Wien

About this paper

Cite this paper

Masliah, E. (1998). Mechanisms of synaptic pathology in Alzheimer’s disease. In: Jellinger, K., Fazekas, F., Windisch, M. (eds) Ageing and Dementia. Journal of Neural Transmission. Supplementa, vol 53. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6467-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6467-9_13

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83114-4

  • Online ISBN: 978-3-7091-6467-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics