Skip to main content

Prostagladin system in the spinal cord: a neuroanatomical study in the pathophysiological states

  • Chapter
Spinal Cord Monitoring

Abstract

Prostaglandins (PGs) exert a wide range of biological actions in various types of tissues in the body. The nervous system is not an exception. A large number of studies have implicated PGs as playing essential roles in a variety of physiological and pathological responses in the nervous system (Shimizu and Wolfe, 1990; Bazan et al., 1995). In the brain, regional distributions of the sites of PG biosynthesis and PG actions have been clarified to some extent, although not completely (Watanabe et al., 1983; Yamashita et al., 1983; Watanabe et al., 1988; Watanabe et al., 1989; Matsumura et al., 1990; Tsubokura et al., 1991; Breder et al., 1992; Matsumura et al., 1992; Sugimoto et al., 1994; Breder et al., 1995; Cao et al., 1995; Matsumura et al., 1995; Breder and Saper, 1996; Cao et al., 1996; Takechi et al., 1996; Cao et al., 1997; Matsumura et al., 1997). In contrast, in the spinal cord, little is known as to where PGs are bio- synthesized and where they act. Such information is of importance for a better understanding of the mechanism of PG-related disorders in the spinal cord and for proper clinical treatment. In this chapter, we would like to overview the functions and location of PG system in the spinal cord. In the first part, biochemical aspects of PG system are shortly summarized. The second part surveys the literature concerning the patho-physiological roles of PGs in the spinal cord. In the third part, our recent experimental results on the location of the PG system in the spinal cord are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barkai AI, Bazan NG (1989) Arachidonic acid metabolism in the nervous system. Physiological and Pathological significance. Ann NY Acad Sci 559: 1–353

    Google Scholar 

  • Bazan NG, Rodriguez de Turco EB, Allan G (1995) Mediators of injury in neurotrauma: intraceilular signal transduction and gene expression. J Neurotrauma 12: 791–814

    Article  PubMed  CAS  Google Scholar 

  • Beiche F, Scheuerer S, Brune K, Geisslinger G, Goppelt-Struebe M (1996) lip-regulation of cyclooxygenase-2 mRNA in the rat spinal cord following peripheral inflammation. FEBS Lett 390: 165–169

    Article  PubMed  CAS  Google Scholar 

  • Birrell GJ, McQueen DS (1993) The effects of capsaicin, bradykinin, PGE2 and cicaprost on the discharge of articular sensory receptors in vitro. Brain Res 611: 103–107

    Article  PubMed  CAS  Google Scholar 

  • Birrell GJ, McQueen DS, Iggo A, Colernan RA, Grubb BD (1991) PGI2-induced activation and sensitization of articular mechanonociceptors. Neurosci Lett 124: 5–8

    Article  PubMed  CAS  Google Scholar 

  • Breder CD, Dewitt D, Kraig RP (1995) Characterization of inducible cyclooxygenase in rat brain. J Comp Neurol 355: 296–315

    Article  PubMed  CAS  Google Scholar 

  • Breuer CD, Saper CB (1996) Expression of inducible cyciooxygenase mRNA in the mouse brain after systemic administration of bacterial lipopolysaccharide. Brain Res 713: 64–69

    Article  Google Scholar 

  • Breder CD, Smith WL, Raz A, Masferrer J, Seibert K. Needleman P, Saper CB (1992) Distribution and characterization of cyclooxygenase immunoreactivity in the ovine brain. J Cornp Neurol 322: 409–438

    Article  CAS  Google Scholar 

  • Cao C, Matsumura K, Yamagata K, Watanabe Y (1995) Induction by Iipopolysaccharide of cyclooxygenase-2 mRNA in rat brain; its possible role in the febrile response. Brain Res 697: 187–19

    Article  PubMed  CAS  Google Scholar 

  • Cao C, Matsumura K, Yamagata K, Watanabe Y (1996) Endothelial cells of the rat brain vasculacture express cyclooxygenase-2 mRNA in response to systemic interieukin-1β: a possible site of prostaglandin synthesis responsible for fever. Brain Res 733: 263–272

    Article  PubMed  CAS  Google Scholar 

  • Cao C, Matsumura K, Yamagata K, Watanabe Y (1997) Involvement of cyclooxygenase-2 in LPS-induced fever and its regulation in the brain. Am J Physiol 272: R1712-R1725

    Google Scholar 

  • Chahl LA, Iggo A (1977) The effects of bradykinin and prostaglandin Ein1 on rat cutaneous afferent nerve activity. Br J Pharmacol 59: 343–347

    Article  PubMed  CAS  Google Scholar 

  • Coleman RA, Smith WL, Narumiya S (1994) International union of pharmacology classification of prostanoid receptors: properties, distribution, and structure of the receptors and their subtypes. Pharmacol Rev 46: 205–229

    PubMed  CAS  Google Scholar 

  • Collier JG, Karim SMM, Robinson B, Somers K (1972) Action of prostaglandin A2, B j, E2 and F2α on superficial hand veins of man. Br J Pharmacol 44: 374–375

    Google Scholar 

  • Demeduik P, Saunders RD. Clendenon NR, Means ED, Anderson DK, Horrocks LA (1985) Changes in lipid metabolism in traumatised spinal cord. Prog Brain Res 63: 211–226

    Article  Google Scholar 

  • England S, Bevan S, Docherty RJ (1996) PGE2 modulates the tetrodotoxin-resistant sodium current in neonatal rat dorsal root ganglion neurones via the cyclic AMP-protein kinase A cascade. J Physiol 495: 429–440

    PubMed  CAS  Google Scholar 

  • Faden AI, Lemke M, Demeduik P (1988) Effects of BW755C, a mixed cyelo-oxygenase-lipoxygenase inhibitor, following traumatic spinal cord injury in rats. Brain Res 463: 63–68

    Article  PubMed  CAS  Google Scholar 

  • Ferreira SH (1972) Prostaglandins. aspirin-like drugs and analgesia. Nature 240: 200–203

    CAS  Google Scholar 

  • Ferreira SH, Moncada S, Vane JR (1973) Prostaglandins and the mechanism of analggesia produced by aspirin-like drugs. Br j Pharmacol 49: 86–97

    Article  PubMed  CAS  Google Scholar 

  • Ferreira SH, Nakamura M, Castro MSA (1978) The hyperalgesic effects of prostacyclin and prostaglandin E2. Prostaglandin 16: 31–37

    CAS  Google Scholar 

  • Glaser KB, Mobilio D, Chang JY, Senko N (1993) Phospholipase A2 enzymes: regulation and inhibition. Trends Pharmacol Sci 14: 92–98

    Article  PubMed  CAS  Google Scholar 

  • Gold MS, Reichling DB, Shuster MJ, Levine JD (1996) Hyperalgesic agents increase a tetrodotoxin-resistant Na+current in nociceptors. Proc Natl Acad Sci USA 93: 1108–1312

    Article  PubMed  CAS  Google Scholar 

  • Gold MS, Shuster MJ, Levine JD (1996) Role of a Ca2+-dependent slow afterhyperpolar-ization in prostaglandin E2-induced sensitization of cultured rat sensory neurons. Neurosci Lett 205: 161–164

    Article  PubMed  CAS  Google Scholar 

  • Goppelt-Struebe M (1995) Regulation of prostaglandin endoperoxide synthase (cyclooxygenase) isozyme expression. Prostaglandins Leukot. Essent Fatty Acids 52: 213–222

    Article  PubMed  CAS  Google Scholar 

  • Hingigen CM, Vasko MR (1994) Prostacyclin enhances the evoked-release of substance P and calcitonin gene-related peptide from rat sensory neurons. Brain Res 655: 51–60

    Article  Google Scholar 

  • Hirata M, Hayashi Y, Ushikubi F, Yokota Y, Kageyama R, Nakanishi S, Narumiya S (1991) Cloning and expression ofcDNA forahumanthromboxane A2 receptor. Nature 349: 617–62

    Article  PubMed  CAS  Google Scholar 

  • Hsu CY, Halushka PV, Hogan EL, Banik NL, Lee WA, Perot PL (1985) Alterations of thromboxane and prostacyclin levels in experimental spinal cord injury. Neurology 35:1003–1009

    Article  PubMed  CAS  Google Scholar 

  • Khasar SG, Levine JD (1996) Neonatal capsaicin attenuates mechanical nociception in the rat. Neurosci Lett 205: 141–143

    Article  PubMed  CAS  Google Scholar 

  • Malmberg AB, Yaksh TL (1992) Antinociceptive actions of spinal nonsteroidal anti-inflammatory agents on the formalin test in the rat. J Pharmacol Exp Ther 263: 136–146

    PubMed  CAS  Google Scholar 

  • Malmberg AB, Yaksh TL (1994) Capsaicin-evoked prostaglandin E2 release in spinal cord slices: relative effect of cyclooxygenase inhibitors. Eur J Pharmacol 271; 293–299

    Article  PubMed  CAS  Google Scholar 

  • Matmberg AB, Yaksh TL (1995) Cyclooxygenase inhibition and the spinal release of prostaglandin E2 and amino acids evoked by paw formalin injection: a microdialysis study in unanesthetized rats. J Neurosci 15: 2768–2776

    Google Scholar 

  • Matsumura K, Cao C, Watanabe Yu, Watanabe Y (1998) Prostaglandin system in the brain: sites of biosynthesis and sites of action under normal and hyperthermic conditions. Prog Brain Res 115: 275–295

    Article  PubMed  CAS  Google Scholar 

  • Matsumura K, Watanabe Yu, Imai-Matsumura K, Connolly M, Koyama Y, Onoe H, Watanabe Y (1992) Mapping of prostaglandin E2 binding sites in rat brain using quantitative autoradiography Brain Res 581: 292–298

    CAS  Google Scholar 

  • Matsumura K, Watanabe Yu, Onoe H, Watanabe Y (1995) Prostacyclin recpetor in the brain and central terminals of the primary sensory neurons: an autoradiographic study using a stable prostacyclin analogue l3H]iloprost. Neuroscience 65: 493–503

    Article  PubMed  CAS  Google Scholar 

  • Matsumura K, Watanabe Yu, Onoe H, Watanabe Y, Hayaishi O (1990) High density of prostaglandin E2 binding sites in the anterior wall of the 3rd ventricle: a possible site of its hyperthermic action. Brain Res 533: 147–151

    Article  PubMed  CAS  Google Scholar 

  • Mense S (1981) Sensitization of group IV muscle receptors to bradykinin by 5-hydroxy-tryptaminse and prostagiandin E2. Brain Res 225: 95–105

    Article  PubMed  CAS  Google Scholar 

  • Minami T, Nishihara I, Uda R, Ito S, Hyodo M, Hayaishi O (1994) Characterization of EP-receptor subtypes involved in allodynia and hyperalgesia induced by intrathecal administration of prostaglandin E2 to mice. Br J Pharmacol 112: 735–740

    Article  PubMed  CAS  Google Scholar 

  • Minami T, Uda R, Horiguchi S, Ito S, Hyodo M, Hayaishi O (1994) Allodynia evoked by intrathecal administration of prostaglandin E2 to conscious mice. Pain 57: 217–223

    Article  PubMed  CAS  Google Scholar 

  • Minami T, Uda R, Horiguchi S, Ito S, Hyodo M, Hayaishi O (1992) Allodynia evoked by intrathecal administration of prostaglandin F2α to conscious mice. Pain 50: 223–229

    Article  PubMed  CAS  Google Scholar 

  • Oida H, Namba T, Sugimoto Y, Ushikubi F, Ohishi H, Ichikawa A, Narumiya S (1995) In situ hybridization of prostacyclin receptor mRNA expression in various mouse organs. Br J Pharmacol 116: 2828–2837

    Article  PubMed  CAS  Google Scholar 

  • Sharma HS, Olsson Y, Nyberg F, Dey PK (1993a) Prostaglandins modulate alterations of microvascular permeability, blood flow, edema and serotonin levels following spinal cord injury. An experimental study in the rat. Neuroscience 57: 443–449

    CAS  Google Scholar 

  • Sharma HS, Olsson Y, Cervós-Navarro, J (1993b) Early perifocal cell changes and edema in traumatic injury of the spinal cord are reduced by indomethacin, an inhibitor of prostaglandin synthesis. Experimental study in the rat. Acta Neuropathol (Berl) 85: 145–153

    CAS  Google Scholar 

  • Sharma HS, Olsson Y, Persson S, Nyberg F (1995) Trauma-induced opening of the the blood-spinal cord barrier is reduced by indomethacin, an inhibitor of prostaglandin biosynthesis. Experimental observations in the rat using [131I]-sodium, Evans blue and lanthanum as tracers. Restorat Neurol Neurosci 7: 207–215

    Google Scholar 

  • Shimizu T, Wolfe LS (1990) Arachidonic acid cascade and signal transduction. J Neurochem 55: 1–15

    Article  PubMed  CAS  Google Scholar 

  • Shohami E, Shapiro Y, Cotev S (1988) Experimental closed head injury in rats: prostaglandin production in a noninjured zone. Neurosurgery 22: 859–863

    Article  PubMed  CAS  Google Scholar 

  • Smith WL, Marnett LJ, DeWitt DL (1991) Prostaglandin and thromboxane biosynthesis. Pharmacol Ther 49: 153–179

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto Y, Shigemoto R, Namba T, Negishi M, Mizuno N, Narumiya S, Ichikawa A (1994) Distriburion of the mRNA for the prostaglandin E receptor subtype EP3 in the mouse nervous system. Neuroscience 62: 919–928

    Article  PubMed  CAS  Google Scholar 

  • Taiwo YO, Bjerknes LK, Goetzl EJ, Levine JD (1989) Mediation of primary afferent peripheral hyperalgesia by the cAMP second messenger system. Neuroscience 32: 577–580

    Article  PubMed  CAS  Google Scholar 

  • Taiwo YO, Levince JD (1988) Prostagiandin inhibit endogenous pain control mechanisms by blocking transmission at spinal noradrenergic synapses. J Neurosci 8: 1346–1349

    PubMed  CAS  Google Scholar 

  • Taiwo YO, Levine JD (1990) Effects of cyclooxygenase products of arachidonic acid metabolism on cutaneous nociceptive threshold in the rat. Brain Res 537: 372–374

    Article  PubMed  CAS  Google Scholar 

  • Takechi H, Matsumura K, Watanabe Y, Kato K, Noyori R, Suzuki M, Watanabe Y (J 996) A novel subtype of the prostaglandin receptor expressed in the central nervous system. J Biol Chem 271: 5901–5906

    Google Scholar 

  • Takeuchi K, Abe T, Takahashi N, Abe K (1993) Molecular cloning and intrarenai localization of rat prostagiandin E2 receptor EP3 subtype. Biochem Biophys Res Commun 194: 885–891

    Article  PubMed  CAS  Google Scholar 

  • Tsubokura S, Watanabe Y, Ehara H, Imamura K, Sugimoto O, Kagamiyama H, Yamamoto S, Hayaishi O (1991) Localization of prostaglandin endoperoxide synthase in neurons and glia of monkey brain. Brain Res 543: 15–24

    Article  PubMed  CAS  Google Scholar 

  • Uda R, Horiguchi S, Ito S, Hyodo M, Hayaishi O (1990) Nociceptive effects induced by intrathecal administration of prostaglandin D2, E2, or F2α to conscious mice. Brain Res 510: 26–32

    Article  PubMed  CAS  Google Scholar 

  • Undem B.T, Weinreich D (1993) Electrophysiological properties and chemosensitivity of guinea pig nodose ganglion neurons in vitro. J Auton Nerv Syst 44: 17–34

    Article  PubMed  CAS  Google Scholar 

  • Ushikubi F, Hirata M, Narumiya S (1995) Molecular biology of prostanoid receptors; an overview. J Lipid Mediat 12: 343–359

    Article  CAS  Google Scholar 

  • Vane JR (1971) Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nature 231: 232–235

    CAS  Google Scholar 

  • Vasko MR, Campbell WB, Waite KJ (1994) Prostaglandin E2 enhances bradykinin-stimulated release of neuropeptides from rat sensory neurons in culture. J Neurosci 14: 4987–4997

    PubMed  CAS  Google Scholar 

  • Watanabe Yu, Watanabe Y, Hamada K, Bommelaer-Bayt M-C, Dray F, Kaneko T, Yumoto N, Hayaishi O (1989) Distinct localization of prostaglandin D2, E2, and F203B1 binding sites in monkey brain. Brain Res 478: 143–148

    Article  PubMed  CAS  Google Scholar 

  • Watanabe Yu, Watanabe Y, Hayaishi O (1988) Quantitative autoradiographic localization of prostaglandin E2 binding sites in monkey diencephalon. J Neurosci 8: 2003–2010

    PubMed  CAS  Google Scholar 

  • Watanabe Y, Yamashita A, Tokumoto H, Hayaishi O (1983) Localization of prostaglandin D2 binding protein and NADP-linked 15-hydroxyprostaglandin D2 dehydrogenase in the Purkinje cells of miniature pig cerebellum. Proc Natl Acad Sci USA 80: 4542–4545

    Article  PubMed  CAS  Google Scholar 

  • Winkler T, Sharma HS, StÃ¥erg E, Olsson Y (1993) Indomethacin, an inhibitor of prostaglandin synthesis attenuates alteration in spinal cord evoked potentials and edema formation after trauma to the spinal cord. An experimental study in the rat. Neuroscience 52: 1057–1067

    CAS  Google Scholar 

  • Yamagata K, Andreasson KI, Kaufmann WE, Barnes CA, Worley PF (1993) Expression of a mitogen-inducible cyclooxygenase in brain neurons: regulation by synaptic activity and glucocorticoids. Neuron 11: 371–386

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto T, Nozaki-Taguchi N (1996) Analysis of the effects of cyclooxygenase (COX)-1 and COX-2 in spinal nociceptive transmission using indomethacin, a non-selective COX inhibitor, and NS-398, a COX-2 selective inhibitor. Brain Res 739: 104–110

    Article  PubMed  CAS  Google Scholar 

  • Yamashita A, Watanabe Y, Hayaishi O (1983) Autoradiographic localization of a binding protein(s) specific for prostaglandin D2 in rat brain. Proc Natl Acad Sci USA 80: 6114–6118

    Article  PubMed  CAS  Google Scholar 

  • Yang LC, Marsala M, Yaksh TL (1996) Characterization of time course of spinal amino acids, citruline and PGE2 release after carrageenan/kaolin-induced knee joint inflammation: a chronic microdialysis study. Pain 67: 345–354

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Wien

About this chapter

Cite this chapter

Matsumura, K. et al. (1998). Prostagladin system in the spinal cord: a neuroanatomical study in the pathophysiological states. In: Stålberg, E., Sharma, H.S., Olsson, Y. (eds) Spinal Cord Monitoring. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6464-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6464-8_5

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7329-9

  • Online ISBN: 978-3-7091-6464-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics