Skip to main content

Parkinson-Krankheit: Pathophysiologie und pathogenetische Faktoren

  • Chapter
Neuro-Psychopharmaka Ein Therapie-Handbuch
  • 95 Accesses

Zusammenfassung

Die Parkinson-Krankheit (PK) ist gekennzeichnet durch fortschreitende Degeneration des nigrostriären dopaminergen Systems sowie anderer subkortikaler Neuronensysteme, die neben striärem Dopaminmangel zu komplexen biochemischen Defiziten als Grundlage der vielfältigen klinischen Ausfälle führen. Die Ursachen des neuronalen Zelltodes bei dieser mit typischen Zytoskelettveränderungen einhergehenden Multisystemerkrankung sind bisher unbekannt. Die pathophysiologischen Grundlagen der klinischen Symptomatik sowie einige pathogenetische Faktoren der neuronalen Degeneration bei PK konnten in letzter Zeit aufgeklärt werden; daraus ergeben sich wichtige Hinweise für Krankheitsverlauf, mögliche Neuroprotektion und Therapie.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Ahlskog JE, Richelson E, Nelson A et al. (1991) Reduced D2 dopamine and muscarinic cholinergic receptor densities in caudate specimens from fluctuating parkinsonian patients. Ann Neurol 30: 185–191

    PubMed  CAS  Google Scholar 

  • Albin RL (1995) The pathophysiology of chorea, ballism and parkinsonism. Parkinsonism Rel Disord 1: 2–133

    Google Scholar 

  • Andrew R, Watson DG, Best SA et al. (1993) The determination of hydroxydopamines and other trace amines in the urine of Parkinsonian patients and normal controls. Neurochem Res 18: 1175–1177

    PubMed  CAS  Google Scholar 

  • Anglade P, Blanchard V, Vozart RR et al. (1996a) Is dopaminergic cell death accompanied by concomitant nerve plasticity? Adv Neurol 69: 195–208

    PubMed  CAS  Google Scholar 

  • Anglade P, Mouattbrigent A, Agid Y, Hirsch EC (1996b) Synaptic plasticity in the caudate nucleus of patients with Parkinson’s disease. Neurodegeneration 5: 121–128

    PubMed  CAS  Google Scholar 

  • Anglade P, Vyas S, Javoy-Agid F et al. (1997) Apoptosis and autophagy in nigral neurons of patients with Parkinson’s disease. Histol His-topathol 12: 25–31

    CAS  Google Scholar 

  • Antonini A, Schwarz J, Oertel WH et al. (1994) [11C]raclopride and positron emission tomography in previously untreated patients with Parkinson’s disease: influence of L-dopa and lisuride therapy on striatal dopamine D2-re-ceptors. Neurology 44: 1325–1329

    PubMed  CAS  Google Scholar 

  • Antonini A, Moeller JR, Nakamura T et al. (1998) The metabolic anatomy of tremor in Parkinson’s disease. Neurology 51: 803–810

    PubMed  CAS  Google Scholar 

  • Arima K, Ueda K, Sunohara N, Arakawa K, Hirai S, Nakamura M, Tonozuka-Ueahra H, Kawai M (1998) NACP/α-synuclein immunoreactivity in fibrillary components of neuronal and oli-godendroglial cytoplasmic inclusions in the pontine nuclei in multiple system atrophy. Acta Neuropathol 96: 439–444

    PubMed  CAS  Google Scholar 

  • Baba M, Nakajo S, Tu PH et al. (1998) Aggregation of α-synuclein in Lewy bodies of sporadic Parkinson’s disease and dementia with Lewy bodies. Am J Pathol 152: 879–884

    PubMed  CAS  Google Scholar 

  • Bagmen T, Carmine B, Dde-long mre-Long MR (1994) Parkinsonian tremor is associated with low frequency oscillations in selective loops of the basal ganglia. Adv Behav Biol 41: 317–325

    Google Scholar 

  • Banati RB, Daniel SE, Path MRC, Blunt SB (1998) Glial pathology but absence of apoptotic nigral neurons in long-standing Parkinson’s disease. Mov Disord 13: 221–227

    PubMed  CAS  Google Scholar 

  • Bannon MJ, Poosch MS, Yue X et al. (1992) Dopamine transporter messenger RNA content in human substantia nigra decreases precipitously with age. Proc Natl Acad Sci 89: 7095–7099

    PubMed  CAS  Google Scholar 

  • Beal MF (1992) Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illnesses? Ann Neurol 31: 119–130

    PubMed  CAS  Google Scholar 

  • Beal MF (1995) Aging, energy and oxidative stress in neurodegenerative diseases. Ann Neurol 38: 357–366

    PubMed  CAS  Google Scholar 

  • Ben-Shachar D, Youdim MBH (1993) Iron, melanin and dopamine interaction — relevance to Parkinson’s disease. Prog Biol Psychiatry 17: 139–150

    CAS  Google Scholar 

  • Ben-Shachar D, Zuk R, Gunka Y (1995) Dopamine neurotoxicity: inhibition of mitochondrial respiration. J Neurochem 64: 718–723

    PubMed  CAS  Google Scholar 

  • Benabid AL, Pollak P, Gervason C et al. (1991) Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet 337: 403–406

    PubMed  CAS  Google Scholar 

  • Benabid AL, Pollak P, Gao DM et al. (1996) Chronic electrical stimulation of the ventralis intermedius nucleus of the thalamus as a treatment of movement disorders. J Neurosurg 84: 203–214

    PubMed  CAS  Google Scholar 

  • Bernheimer H, Birkmayer W, Hornykiewicz O et al. (1973) Brain dopamine and the syndromes of Parkinson and Huntington: clinical, morphological and neurochemical correlations. J Neurol Sci 20: 415–455

    PubMed  CAS  Google Scholar 

  • Blanchard V, Raisman-Vozari R, Vyas S et al. (1994) Differential expression of tyrosine hydroxylase and membrane dopamine transporter genes in subpopulations of dopaminergic neurons of rat mesencephalon. Mol Brain Res 22: 29–40

    PubMed  CAS  Google Scholar 

  • Blandini F, Porter RHP, Greenamyre JT (1996) Glutamate and Parkinson’s disease. Mol Neu-robiol 12: 73–94

    CAS  Google Scholar 

  • Boecker H, Wills AJ, Ceballos-Baumann A et al. (1997) Stereotactic thalamotomy in tremor-dominant Parkinson’s disease — an (H2O)-O-15 PET motor activation study. Ann Neurol 41: 108–111

    PubMed  CAS  Google Scholar 

  • Booij J, Tissingh G, Boer GJ et al. (1997) [123I]FFP-CIT SPECTP-CIT SPECT shows a pronounced decline of striatal dopamine transporter labelling in early and advanced Parkinson’s disease. J Neurol Neurosurg Psychiatry 62: 133–140

    PubMed  CAS  Google Scholar 

  • Braak H, Braak E, Yilmazer D et al. (1996) Pattern of brain destruction in Parkinson’s and Alzheimer’s diseases. J Neural Transm 103: 455–490

    PubMed  CAS  Google Scholar 

  • Bringmann G, God R, Feineis D et al. (1995) The TaClo concept: 1-trichloromethyl-1,2,3,4-tet-rahydro-ß-carboline (TaClo), a new toxin for dopaminergic neurons. J Neural Transm 46 [Suppl]: 235–244

    CAS  Google Scholar 

  • Bringmann G, Feineis D, God R et al. (1996) Neurotoxic effects on the dopaminergic system induced by Taclo (1-trichloromethyl-1,2,3,4-tetrahydro-beta-carboline), a potential mama-lian alkaloid; in vivo and in vitro studies. Bio-gen Amines 12: 83–102

    CAS  Google Scholar 

  • Brion JP, Couck AM (1995) Cortical and brain-stem-type Lewy bodies are immunoreactive for the cyclin-dependent kinase 5. Am J Pathol 147: 1465–1476

    PubMed  CAS  Google Scholar 

  • Brooks DJ (1993) Functional imaging in relation to parkinsonian syndromes. J Neurol Sci 115: 1–17

    PubMed  CAS  Google Scholar 

  • Bucher SF, Seelos KC, Dodel RC et al. (1997) Activation mapping in essential tremor with functional magnetic resonance imaging. Ann Neurol 41: 32–40

    PubMed  CAS  Google Scholar 

  • Burn DJ, Sawle GC, Brooks DJ (1994) Differential diagnosis of Parkinson’s disease, multi system atrophy, and Steele-Richardson-Olszewski syndrome: discriminant analysis of striatal 18F-dopa PET data. J Neurol Neurosurg Psychiatry 57: 277–284

    Google Scholar 

  • Chang MH, Chang TW, Lai PH, Sy CG (1995) Resting tremor only — a variant of Parkinson’s disease or of essential tremor. J Neurol Sci 130: 215–219

    PubMed  CAS  Google Scholar 

  • Chase TN, Oh JD, Blanchet PJ (1998) Neostriatal mechanisms in Parkinson’s disease. Neurology 51 [Suppl 2]: S 30–35

    Google Scholar 

  • Counihan TJ, Penney JB JR (1998) Regional dopamine transporter gene expression in the substantia nigra from control and Parkinson’s diseased brains. J Neurol Neurosurg Psychiatry 65: 164–169

    PubMed  CAS  Google Scholar 

  • Counihan TJ, Landwehrmeer B, Lücking CH et al. (1997) Lipid peroxidation in Parkinson’s disease, an immunohistochemical study. Neurology 48: A202

    Google Scholar 

  • Damier P, Hirsch EC, Agid Y (1996a) Patterns of cell loss in the substantia nigra in Parkinson’s disease. Neurology 46: A442

    Google Scholar 

  • Damier P, Kastner A, Agid Y, Hirsch EC (1996b) Does monoamine oxidase type B play a role in dopaminergic nerve cell death in Parkinson’s disease? Neurology 46: 1262–1269

    PubMed  CAS  Google Scholar 

  • Deutch AY, Goldstein M, Baldino FJ, Roth RH (1988) Telencephalic projections of the A8 dopaminergic cell group. Ann NY Acad Sci 537: 27–50

    PubMed  CAS  Google Scholar 

  • Dexter DT, Rose S, Handmarsh JG et al. (1994) Indices of oxidative stress and mitochondrial function in individuals with incidental Lewy body disease. Ann Neurol 35: 38–44

    PubMed  CAS  Google Scholar 

  • Diedrich N, Goetz CG, Stebbins GT et al. (1992) Blinded evaluation confirms long-term asymmetric effect of unilateral thalamotomy or sub-thalamotomy on tremor in Parkinson’s disease. Neurology 32: 1311–1314

    Google Scholar 

  • Dormont D, Cornu P, Piduux B et al. (1998) Chronic thalamic stimulation with three-dimensional MR stereotactic guidance. Am J Neuroradiol 18: 1093–1107

    Google Scholar 

  • Dragunow M, Faull R, Lawlor P, Beilharz EJ, Singleton K, Walker EB, Mee E (1995) In situ evidence for DNA fragmentation in Huntington’s disease striatum and Alzheimer’s disease temporal lobes. Neuroreport 6: 1053–1057

    PubMed  CAS  Google Scholar 

  • Ebadi M, Srinivasan SK, Baxi MD (1996) Oxidative stress and antioxidant therapy in Parkinson’s disease. Progr Neurobiol 48: 1–19

    CAS  Google Scholar 

  • Eel-agnaf omal-Agnaf OMA, Curran MD, Wallace A et al. (1998) Mutation screening in exons 3 and 4 of alpha-synuclein in sporadic Parkinson’s and sporadic and familial dementia with Lewy body cases. Neuro-Report 9: 3925–3927

    Google Scholar 

  • Elsworth J, Roth R (1996) Dopamine autorecep-tor pharmacology and function: recent insights. In: Neve K, Neve R (eds) The dopamine receptors. Humana Press, Totowa, pp 223–265

    Google Scholar 

  • Eve DJ, Niebet AP, Kingsbury AE et al. (1998) Selective increase in somatostatin mRNA expression in human basal ganglia in Parkinson’s disease. Mol Brain Res 50: 59–70

    Google Scholar 

  • Fahn S (1997) Levodopa-induced neurotoxicity: does it represent a problem for the treatment of Parkinson’s disease? CNS Drugs 8: 376–393

    CAS  Google Scholar 

  • Fallon J, Matthews RT, Hyman BT, Beal MF (1997) MPP+ produces progressive neuronal degeneration which is mediated by oxidative stress. Exp Neurol 144: 193–198

    PubMed  CAS  Google Scholar 

  • Faucheux BA, Herrero MT, Villares J et al. (1995a) Autoradiographic localization and density of [125I]ferrotransferrin binding sites in the basal ganglia of control subjects, patients with Parkinson’s disease and MPTP-lesioned monkeys. Brain Res 691: 115–124

    PubMed  CAS  Google Scholar 

  • Faucheux BA, Nillesse N, Damier P et al. (1995b) Expression of lactoferrin receptors is increased in the mesencephalon of patients with Parkinson disease. Proc Natl Acad Sci USA 92: 9603–9607

    PubMed  CAS  Google Scholar 

  • Fearnley JM, Lees A (1991) Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 114: 2283–2301

    PubMed  Google Scholar 

  • Fernandez A, Deceballos ML, Rose S et al. (1996) Alterations in peptide levels in Parkinson’s disease and incidental Lewy body disease. Brain 119: 823–830

    PubMed  Google Scholar 

  • Fernandez PM, Dujovny M (1997) Pallidotomy-Editorial review. Neurol Res 19: 25–34

    PubMed  CAS  Google Scholar 

  • Foster NL, Wilhelmsen K, Sima AAF et al. (1997) Frontotemporal dementia and Parkinsonism linked to chromosome 17 — a consensus conference. Ann Neurol 41: 706–715

    PubMed  CAS  Google Scholar 

  • Fowler JS, Valkow ND, Wang GJ et al. (1996) Inhibition of monoamine oxidase B in the brains of smokers. Nature 379: 733–736

    PubMed  CAS  Google Scholar 

  • Frey KA, Koeppe RA, Kilbourn MR et al. (1996) Presynaptic monoeminergic vesicles in Parkinson’s disease and normal aging. Ann Neurol 40: 873–884

    PubMed  CAS  Google Scholar 

  • Frost JJ, Rosier AJ, Reich SG et al. (1993) Positron emission tomographic imaging of the dopamine transporter with 11C-WIN 35,428 reveals marked declines in mild Parkinson’s disease. Ann Neurol 43: 423–431

    Google Scholar 

  • Furukawa Y, Kondo T, Nishi K et al. (1991) Total biopterin levels in the ventricular CSF of patients with Parkinson’s disease: a comparison between akineto-rigid and tremor types. J Neurol Sci 103: 232–237

    PubMed  CAS  Google Scholar 

  • Gai WP, Vickers JC, Blumbergs PC, Blessing WW (1994) Loss of nonphosphorylated neurofilament immunoreactivity, with preservation of tyrosine hydroxylase, in surviving substantia nigra neurons in Parkinson’s disease. J Neurol Neurosurg Psychiatry 57: 1039–1046

    PubMed  CAS  Google Scholar 

  • Gai WP, Blessing WW, Blumbergs PC (1995) Ubiquitin-positive degenerating neuntes in the brainstem in Parkinson’s disease. Brain 118: 1447–1459

    PubMed  Google Scholar 

  • Galvin JE, Lee AMY, Baba M, Mann DMA, Dickson DW, Yamaguchi H, Schmidt ML, Iwatsubo T, Trojanowski JQ (1997) Monoclonal antibodies to purified cortical Lewy bodies recognize the mid-size neurofilament subunit. Ann Neurol 42: 595–603

    PubMed  CAS  Google Scholar 

  • Gash DM, Zhang Z, Ovadia A et al. (1996) Functional recovery in GDNF-treated Parkinsonian monkeys. Nature 380: 252–255

    PubMed  CAS  Google Scholar 

  • Gasser T (1998) Genetics of Parkinson’s disease. Ann Neurol 44 [Suppl 1]: S53–S57

    PubMed  CAS  Google Scholar 

  • Gasser T, Wszolek ZK, Trofatter J et al. (1994) Genetic linkage studies in autosomal dominant parkinsonism. Ann Neurol 387–396

    Google Scholar 

  • Gerfen C (1992) The neostriatal mosaic: multiple levels of compartmental organization. Trends Neurosci 15: 133–139

    PubMed  CAS  Google Scholar 

  • Gerlach M, Riederer P (1993) The pathophysiological basis of Parkinson’s disease. In: Sze-Leny I (ed) Inhibitors of monoamine oxidase B. Pharmacology and clinical use in neurodegenerative disorders. Birkhäuser, Basel, pp 25–50

    Google Scholar 

  • Gerlach M, Ben-Shachar D, Riederer P, Youdim MBH (1994) Altered brain metabolism of iron as a cause of neurodegenerative diseases? J Neurosurg 63: 743–804

    Google Scholar 

  • Gerlach M, Gsell W, Kornhuber J et al. (1996a) A post mortem study on neurochemical markers of dopaminergic, GABA-ergic and glutamatergic neurons in basal ganglia thalamocortical circuits in Parkinson syndrome. Brain Res 741: 142–152

    PubMed  CAS  Google Scholar 

  • Gerlach M, Riederer P, Youdim MBH (1996b) Molecular mechanisms of neurodegeneration. Synergism between reactive oxygen species, calcium, and excitotoxic amino acids. Adv Neurol 69: 177–194

    PubMed  CAS  Google Scholar 

  • German DC, Manaye KF, Sonsalia PK, Brooks BA (1992) Midbrain dopaminergic cell loss in Parkinson’s disease and MPTP-induced Parkinsonism — sparing of Calbindin-D (26K)-containing cells. Ann NY Acad Sci 648: 42–62

    PubMed  CAS  Google Scholar 

  • Gibb WRG (1992) Melanin, tyrosine hydroxylase, calbindin and substance P in the human midbrain and substantia nigra in relation to nigro-striatal projections and differential neuronal susceptibility in Parkinson’s disease. Brain Res 581: 283–291

    PubMed  CAS  Google Scholar 

  • Gilman S, Frey KA, Koeppe RA, et al. (1996) Decreased striatal monoaminergic terminals in olivopontocerebellar atrophy and multiple system atrophy demonstrated with positron emission tomography. Ann Neurol 40: 885–892

    PubMed  CAS  Google Scholar 

  • Golbe LI (1999) Alpha-synuclein and parkinson’s disease. Mov Disord 14: 6–9

    PubMed  CAS  Google Scholar 

  • Golbe LI, Iorio G, Bonavita V et al. (1996) Clinical genetic analysis of Parkinson’s disease in the Conturs kindred. Ann Neurol 40: 767–775

    PubMed  CAS  Google Scholar 

  • Good PF, Olanow CW, Perl DP (1992) Neu-romelanin-containing neurons of the substantia nigra accumulate iron and aluminium in Parkinson’s disease. A LAMMA study. Brain Res 593: 343–346

    CAS  Google Scholar 

  • Good PF, Olanow CW, Perl DP (1997) LAMMA studies of iron, oxidative stress, and neuroprotective strategies in Parkinson’s disease. In: Yasui M, Strong MJ, Ota K, Verity MA (eds) Mineral and metal neurotoxicology. CRC Press, Boca Raton, pp 379–390

    Google Scholar 

  • Gorell JM, Johnson CC, Rybicki BA et al. (1997) Occupational exposures to metals as risk factors for Parkinson’s disease. Neurology 48: 650–658

    PubMed  CAS  Google Scholar 

  • Gorell JM, Johnson CC, Rybicki BA et al. (1998) The risk of Parkinson disease with exposure to pesticides, farming, well water, and rural living. Neurology 50: 1346–1350

    PubMed  CAS  Google Scholar 

  • Goto S, Matsumoto S, Ushio Y, Hirano A (1996) Subregional loss of putaminal efferents to the basal ganglia output nuclei may cause parkinsonism in striatonigral degeneration. Neurology 47: 1032–1036

    PubMed  CAS  Google Scholar 

  • Götz ME, König G, Riederer P et al. (1994) Oxidative stress, free radical production ion neural degeneration. Pharmacol Ther 65: 37–122

    Google Scholar 

  • Greenfield SA (1992) Cell death in Parkinson’s disease. Essays Biochem 2–27: 103–118

    Google Scholar 

  • Gross C, Rougier A, Guehl D et al. (1997) High-frequency stimulation of the globus pal-lidus internalis in Parkinson’s disease — a study of seven cases. J Neurosurg 87: 491–498

    PubMed  CAS  Google Scholar 

  • Guttman M, Burkholder J, Hussey D et al. (1997) (11C)RTI-32 PET studies of the dopamine transporter in early dopa-naive Parkinson’s disease. Neurology 48: 1578–1583

    PubMed  CAS  Google Scholar 

  • Halliday GM, Mcritchie DA, Cartwright HR et al. (1996) Midbrain neuropathology in idiopathic Parkinson’s disease and diffuse Lewy body disease. J Clin Neurosci 3: 52–60

    PubMed  CAS  Google Scholar 

  • Hardman CD, Mcritchie DA, Halliday GM et al. (1996) The substantia nigra pars reticulata in Parkinson’s disease. Neurodegeneration 5: 49–55

    PubMed  CAS  Google Scholar 

  • Hardman CD, Halliday GM, Mcritchie DA et al. (1997a) Progressive supranuclear palsy affects both the substantia nigra pars compacta and reticulata. Exp Neurol 144: 183–192

    PubMed  CAS  Google Scholar 

  • Hardman CD, Halliday GM, Mcritchie DA, Morris JGL (1997b) The subthalamic nucleus in Parkinson’s disease and progressive supranuclear palsy. J Neuropathol Exp Neurol 56: 132–142

    PubMed  CAS  Google Scholar 

  • Hellenbrand W, Seidler A, Robra BP et al. (1997) Smoking and Parkinson’s disease — a case-control study in Germany. Int J Epidemiol 26: 328–339

    PubMed  CAS  Google Scholar 

  • Hierholzer J, Cordes M, Venz S et al. (1998) Loss of dopamine-D2 receptor binding sites in Parkinsonian-plus syndromes. J Nucl Med 39: 954–960

    PubMed  CAS  Google Scholar 

  • Hirsch E, Graybiel AM, Agid YA (1988) Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease. Nature 334: 345–348

    PubMed  CAS  Google Scholar 

  • Hirsch EC, Brandel JP, Galle P et al. (1991) Iron and aluminum increase in the substantia nigra of patients with Parkinson’s disease: an X-ray microanalysis. J Neurochem 56: 446–451

    PubMed  CAS  Google Scholar 

  • Hirsch EC, Mouatt A, Thomasset M et al. (1992) Expression of calbindin D (28K) — like immu-noreactivity in catecholuminergic cell groups of the human midbrain; normal distribution and distribution in Parkinson’s disease. Neurodegeneration 1: 83–93

    Google Scholar 

  • Hirsch EC, Faucheux B, Damier P et al. (1997) Neuronal vulnerability in Parkinson’s disease. J Neural Transm [Suppl] 50: 79–88

    CAS  Google Scholar 

  • Hou JGG, Lin LFH, Mytilineou C (1996) Glial cell line-derived neurotrophic factor exerts neurotrophic effects on dopaminergic neurons in vitro and promotes their survival and re-growth after damage by 1-methyl-4-phenyl-pyridinium. J Neurochem 66: 74–82

    PubMed  CAS  Google Scholar 

  • Hunot S, Boissiere F, Faucheux B et al. (1996a) Nitric oxide synthase and neuronal vulnerability in Parkinson’s disease. Neuroscience 72: 355–363

    PubMed  CAS  Google Scholar 

  • Hunot S, Bernard V, Faucheux B et al. (1996b) Glial cell line-derived neurotrophic factor (GDNF) gene expression in the human brain: a post mortem in situ hybridization study with special reference to Parkinson’s disease. J Neural Transm 103: 1043–1052

    PubMed  CAS  Google Scholar 

  • Hoogendijk WJG, Pool CW, Troost D et al. (1995) Image analyser-assisted morphometry of the locus coeruleus in Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. Brain 118: 131–143

    PubMed  Google Scholar 

  • Hutchinson WD, Lozano AM, Tasker RR et al. (1997) Identification and characterization of neurons with tremor-frequency activity in human globus pallidus. Exp Brain Res 113: 557–563

    Google Scholar 

  • Irrizary MC, Growdon W, Gomez-Isla T et al. (1998) Nigral and cortical Lewy bodies and dystrophic nigral neuntes in Parkinson’s disease and cortical Lewy body disease contain α-synuclein immunoreactivity. J Neuropathol Exp Neurol 57: 334–337

    Google Scholar 

  • Ito H, Goto S, Sakamoto S, Hirano A (1992) Calbindin-D28K in the basal ganglia of patients with Parkinsonism. Ann Neurol 32: 543–550

    PubMed  CAS  Google Scholar 

  • Ito H, Kosaka H, Matsumoto S, Imai T (1996) Striatal efferent involvement and its correlation to levadopa efficacy in patients with multiple system atrophy. Neurology 47:1291–1299

    PubMed  CAS  Google Scholar 

  • Itoh K, Weis S, Mehraein P, Müller-Höcker J (1997) Defects of cytochrome c oxidase in the substantia nigra of Parkinson’s disease: an immunohistochemical and morphometric study. Mov Disord 12: 9–16

    PubMed  CAS  Google Scholar 

  • Jackson-Lewis V, Donaldson D, Przedborski S (1997) Apoptosis and Parkinson’s disease (PD). Neurology 48: A323

    Google Scholar 

  • Jellinger KA (1991) Pathology of Parkinson’s disease. Changes other than the nigrostriatal pathway. Mol Chem Neuropathol 14:153–197

    PubMed  CAS  Google Scholar 

  • Jellinger K (1993) Pathogenese und Pathophysiologic der Parkinson-Krankheit. Neuro-psychiatrie 7: 29–37

    Google Scholar 

  • Jellinger KA (1995) Neurodegenerative disorders with extrapyramidal features. A neuropatho-logical overview. J Neural Transm 46 [Suppl]: 33–56

    CAS  Google Scholar 

  • Jellinger KA (1996) Bewegungsstörungen im höheren Lebensalter. In: Zapotocky HG, Fischhoff PK (Hrsg) Handbuch der Gerontopsych-iatrie. Springer, Wien New York, S 202–290

    Google Scholar 

  • Jellinger KA (1998) Neuropathology of movement disorders. Neurosurg Clin North Am 9: 237–262

    CAS  Google Scholar 

  • Jellinger KA (1999a) Post mortem studies in Parkinson’s disease — is it possible to detect brain areas for specific symptoms? J Neural Transm [Suppl] 56: 1–27

    CAS  Google Scholar 

  • Jellinger KA (1999b) Cell death mechanisms in Parkinson’s disease. J Neural Transm (in Druck)

    Google Scholar 

  • Jellinger KA (1999c) The role of iron in neurode-generation. Prospects for pharmacotherapy of Parkinson’s disease. Drugs Aging 14: 115–140

    CAS  Google Scholar 

  • Jellinger K, Kienzl E, Rumpelmair G et al. (1992) Iron-melanin complex in substantia nigra of parkinsonian brains: an X-ray microanalysis. J Neurochem 59: 1168–1171

    PubMed  CAS  Google Scholar 

  • Jenner P (1998) Oxidative mechanisms in nigral cell death in Parkinson’s disease. Mov Disord 13: 24–34

    PubMed  Google Scholar 

  • Jenner P, Olanow CW (1996) Oxidative stress and the pathogenesis of Parkinson’ disease. Neurology 56 [Suppl 3]: S161–S170

    Google Scholar 

  • Jenner P, Olanow CW (1998) Understanding cell death in Parkinson’s disease. Ann Neurol 44: S72–72S84

    Google Scholar 

  • Jenner P, Schaapira AVH, Marsden CD (1992) New insights into the cause of Parkinson’s disease. Neurology 42: 2241–2250

    PubMed  CAS  Google Scholar 

  • Johansson F, Malm J, Nordh E, Hariz M (1997) Usefulness of pallidotomy in advanced Parkinson’s disease. J Neurol Neurosurg Psychiatry 62: 125–132

    PubMed  CAS  Google Scholar 

  • Joyce JN, Smutzer G, Whitty CJ et al. (1997) Differential modification of dopamine transporter and tyrosine hydroxylase mRNAs in midbrain of subjects with Parkinson’s, Alzheimer’s with parkinsonism, and Alzheimer’s disease. Mov Disord 12: 885–897

    PubMed  CAS  Google Scholar 

  • Kang UJ, Nakamura K (1997) Glutathione in dopaminergic neurons. Neurology 48: S-202

    Google Scholar 

  • Kastner A, Hirsch EC, Lejeune O et al. (1992) Is the vulnerability of neurons in the substantia nigra of patients with Parkinson’s disease related to the neuromelanin content? J Neurochem 59: 1080–1089

    PubMed  CAS  Google Scholar 

  • Kastner A, Hirsch EC, Agid Y, Javoy-Agid F (1993) Tyrosine hydroxylase protein and messenger RNA in the dopamine nigral neurons of patients with Parkinson’s disease. Brain Res 606: 341–345

    PubMed  CAS  Google Scholar 

  • Kienzl E, Puchinger L, Jellinger K etal. (1995) The role of transition metals in the pathogenesis of Parkinson’s disease. J Neurol Sci 134 [Suppl]: 69–75

    PubMed  Google Scholar 

  • Kingsbury AE, Marsden CD, Foster OJF (1998) DNA fragmentation in human substantia nigra: apoptosis or perimortem effect? Mov Disord 13: 877–884

    PubMed  CAS  Google Scholar 

  • Kish SJ, Shannak K, Hornykiewicz O (1988) Uneven patterns of dopamine loss in the striatum of patients with Parkinson’s disease. N Engl J Med 318: 876–880

    PubMed  CAS  Google Scholar 

  • Kordower JH, Goetz CG, Freeman TB, Olanow CW (1997) Dopaminergic transplants in patients with Parkinson’s disease: neuroanatom-ical correlates of clinical recovery. Exp Neurol 144: 41–46

    PubMed  CAS  Google Scholar 

  • Kösel S, Lücking CB, Egensperger R et al. (1996) Mitochondrial NADH dehydrogenase and CYP2D6 genotypes in Lewy-body parkinsonism. J Neurosci Res 44: 174–183

    PubMed  Google Scholar 

  • Kösel S, Egensperger R, Von Eitzen U et al. (1997) On the question of apoptosis in the substantia nigra in Parkinson’s disease. Acta Neuropathol 93: 105–109

    PubMed  Google Scholar 

  • Kraus JK, Jankovic J, Lai EC et al. (1997) Postero-ventral medial pallidotomy in Levodopa-unresponsive parkinsonism. Arch Neurol 54: 1026–1029

    Google Scholar 

  • Kume A, Takahashi A, Hashizume Y (1993) Neuronal cell loss of the striatonigral system in multiple system atrophy. J Neuro Sci 117: 33–40

    CAS  Google Scholar 

  • Kupsch A, Earl C (1999) Neurosurgical interventions in the treatment of idiopathic Parkinson disease; neurostimulation and neural implantation. J Mol Med 77: 178–184

    PubMed  CAS  Google Scholar 

  • Lach H, Grimes D, Benoit B, Minkiewicz-Janda A (1992) Caudate nucleus pathology in Parkinson’s disease. Ultrastructural and biochemical findings in biopsy material. Acta Neuropathol 83: 352–360

    PubMed  CAS  Google Scholar 

  • Lang AE, Curran T, Provias J et al. (1994) Striato-nigral degeneration: iron deposition in puta-men correlates with the slit-like void signal of magnetic resonance imaging. Can J Neurol Sci 21: 311–318

    PubMed  CAS  Google Scholar 

  • Lange KW, Youdim MBH, Riederer P (1992) Neurotoxicity and neuroprotection in Parkinson’s disease. J Neural Transm [Suppl] 38: 27–44

    CAS  Google Scholar 

  • Lange KW, Rausch WD, Gsell W et al. (1994) Neuroprotection by dopamine agonists. J Neural Transm [Suppl] 43: 183–201

    CAS  Google Scholar 

  • Lapchak PA, Gash DM, Jiao S et al. (1997) Glial cell line-derived neurotrophic factor: a novel therapeutic approach to treat motor dysfunction in Parkinson’s disease. Exp Neurol 144: 29–34

    PubMed  CAS  Google Scholar 

  • Lestienne P, Nelson I, Riederer P et al. (1991) Normal mitochondrial genome in brain from patients with Parkinson’s disease and complex I defect. J Neurochem 55: 1810–1812

    Google Scholar 

  • Leveugle B, Faucheux BA, Bouras C et al. (1996) Cellular distribution of the iron-binding protein lactotransferrin in the mesencephalon of Parkinson’s disease cases. Acta Neuropathol 91: 566–572

    PubMed  CAS  Google Scholar 

  • Limousin P, Krack P, Pollak P et al. (1998) Electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med 339: 1105–1111

    PubMed  CAS  Google Scholar 

  • Limousin P, Speelman JD, Gielen F et al. (1999) Multicentre European study of thalamic stimulation in parkinsonian and essential tremor. J Neurol Neurosurg Psychiatry 66: 289–296

    PubMed  CAS  Google Scholar 

  • Linert W, Herlinger E, Jameson RF et al. (1996) Dopamine, 6-hydroxydopamine, iron, and dioxygen — their mutual interactions and possible implication in the development of Parkinson’s disease. Biochem Biophys Acta 1316: 160–168

    PubMed  Google Scholar 

  • Litvan I, Hauw JJ, Bartko JJ et al. (1996) Validity and reliability of the preliminary NINDS neu-ropathologic criteria for progressive supranuclear palsy and related disorders. J Neuropathol Exp Neurol 55: 97–105

    PubMed  CAS  Google Scholar 

  • Lowe J, Lennox G, Leigh PN (1997) Disorders of movement and system degenerations. In: Graham DI, Lantos PL (ed) Greenfield’s Neuropathology, 6th ed. E. Arnold, London, pp 280–366

    Google Scholar 

  • Lynd-Balta E, Haber SN (1994) Primate striato-nigral projections: a comparison of the sen-sorimotor-related striatum and the ventral striatum. J Comp Neurol 345: 562–578

    PubMed  CAS  Google Scholar 

  • Ma SY, Rinne JO, Collan Y et al. (1995) A quantitative morphometrical study of the neuron degeneration in the substantia nigra in patients with Parkinson’s disease. J Neurol Sci 140: 40–45

    Google Scholar 

  • Ma SY, Röyttä M, Rinne JO et al. (1997) Correlation between neuromorphometry in the substantia nigra and clinical features in Parkinson’s disease using dissector counts. J Neurol Sci 151: 83–87

    PubMed  CAS  Google Scholar 

  • Ma SY, Roytta M, Collan J, Rinne O (1998) Unbiased morphometric measurements show nigral neuronal loss with aging. Neurology 50: A 336

    Google Scholar 

  • Mann VM, Cooper JM, Daniel SE et al. (1994) Complex I, Iron, and ferritin in Parkinson’s disease substantia nigra. Ann Neurol 36: 876–881

    PubMed  CAS  Google Scholar 

  • Manza D, Saliveri P, Radice V et al. (1998) Cognitive dysfunction and impaired organization of complex mobility in degenerative parkinsonian syndromes. Arch Neurol 55: 372–378

    Google Scholar 

  • Marek KL, Seibyl JP, Zoghbi SS et al. (1996) (123I) B-CIT/SPECT imaging demonstrates bilateral loss of dopamine transporters in hemi-Parkin-son’s disease. Neurology 46: 231–237

    PubMed  CAS  Google Scholar 

  • Mcgeer PL, Itagaki S, Akiyama H, Mcgeer EG (1988) Rate of cell death in parkinsonism indicates active neuropathological process. Ann Neurol 24: 574–576

    PubMed  CAS  Google Scholar 

  • Mcritchie DA, Cartwright HR, Halliday GM (1997) Specific A10 dopaminergic nuclei in the midbrain degenerate in Parkinson’s disease. Exp Neurol 144: 202–213

    PubMed  CAS  Google Scholar 

  • Mezey E, Dehejia A, Harta G et al. (1998a) Alpha synuclein is present in Lewy bodies in sporadic Parkinson’s disease. Mol Psychiat 3: 493–499

    CAS  Google Scholar 

  • Mezey E, Dehejia A, Harta G (1998b) Alpha synuclein in neurodegenerative disorders; murderer or accomplice? Nature Med 4: 755–757

    PubMed  CAS  Google Scholar 

  • Miller GW, Staley JK, Heilman CJ et al. (1997) Immunochemical analysis of dopamine transporter protein in Parkinson’s disease. Ann Neurol 41: 530–539

    PubMed  CAS  Google Scholar 

  • Mizuno Y, Yoshino H, Ikeba S et al. (1998) Mitochondrial dysfunction in Parkinson’s disease. Ann Neurol 44 [Suppl 1]: S99–S109

    PubMed  CAS  Google Scholar 

  • Mochizuki H, Goto K, Mori H, Mizuno Y (1996) Histochemical detection of apoptosis in Parkinson’s disease. J Neurol Sci 137: 120–123

    PubMed  CAS  Google Scholar 

  • Mochizuki H, Mori H, Mizuno Y (1997) Apoptosis in neurodegenerative disorders. J Neural Transm [Suppl] 50: 125–140

    CAS  Google Scholar 

  • Morens DM, Grandinetti A, Reed D et al. (1995) Cigarette smoking and protection from Parkinson’s disease. Neurology 45: 1041–1051

    PubMed  CAS  Google Scholar 

  • Morens DM, Grandinetti A, Davis JW et al. (1996) Evidence against the operation of selective mortality in explaining the association between cigarette smoking and reduced occurrence of idiopathic Parkinson’s disease. Am J Epidemiol 144: 400–404

    PubMed  CAS  Google Scholar 

  • Morrish PK, Sawle GV, Brooks DJ (1996a) The rate of progression of Parkinson’s disease: a longitudinal (18F)DOPA PET study. Adv Neurol 69: 427–431

    PubMed  CAS  Google Scholar 

  • Morrish PK, Sawle GV, Brooks DJ (1996b) Regional changes in [18F]dopa metabolism in the striatum in Parkinson’s disease. Brain 119: 2097–2103

    PubMed  Google Scholar 

  • Mouatt-Prigent A, Agid Y, Hirsch EC (1994) Does the calcium binding protein calretinin protect dopaminergic neurons against degeneration in Parkinson’s disease? Brain Res 668: 62–70

    PubMed  CAS  Google Scholar 

  • Mouatt-Prigent A, Karlsson JO, Agid Y, Hirsch EC (1996) Increased m-calpain expression in the mesencephalon of patients with Parkinson’s disease but not in other neurodegenerative disorders involving the mesencephalon: a role in cell death? Neuroscience 73: 979–987

    PubMed  CAS  Google Scholar 

  • Neill TH, Brown SA, Rafols JA, Shoulson L (1988) Atrophy of medium spiny I striatal dendrites in advanced Parkinson’s disease. Brain Res 455: 148–152

    Google Scholar 

  • Nirenberg MJ, Vaughan RA, Uhl GR et al. (1996) The dopamin transporter is localized to dendritic and axonal plasma membranes of nigro-striatal dopaminergic neurons. J Neurosci 16: 436–447

    PubMed  CAS  Google Scholar 

  • Nisbet AP, Eve DJ, Kingsbury AE et al. (1996) Glutamate decarboxylase-67 messenger RNA expression in normal human basal ganglia and in Parkinson’s disease. Neuroscience 75: 389–406

    PubMed  CAS  Google Scholar 

  • Nishio T, Furukawa S, Akiguchi I, Sunohara N (1998) Medial nigral dopamine neurons have rich neurotrophin support in humans. Neu-roRep 9: 2847–2851

    CAS  Google Scholar 

  • Obeso JA, Guridi J, Delong M (1997) Surgery for Parkinson’s disease. J Neurol Neurosurg Psychiatry 62: 2–8

    PubMed  CAS  Google Scholar 

  • Olanow CW, Arendash GW (1994) Metals and free radicals in neurodegeneration. Curr Opin Neurol 7: 548–558

    PubMed  CAS  Google Scholar 

  • Olanow CW, Tatton N, Redman R et al. (1998) Apoptosis and mitochondrial potential in Parkinson’s disease. Ann Neurol 44: 452

    Google Scholar 

  • Olson L (1997) The oming of age of the GDNF family and its receptor: gene delivery in a rat Parkinson model may have clinical implications. Trends Neurosci 20: 277–279

    PubMed  CAS  Google Scholar 

  • Omar R, Smith M, Perry G et al. (1996) Immuno-histochemical evidence of oxidative stress in Parkinson’s disease (PD). J Neuropathol Exp Neurol 54: 634

    Google Scholar 

  • Oo TF, Burke RE (1997) The time cause of developmental cell death in phenotypically defined dopaminergic neurons of the substantia nigra. Dev Brain Res 98: 191–196

    CAS  Google Scholar 

  • Otsuka M, Ichiya Y, Kuwabara Y et al. (1996) Differences in the reduced 18F-Dopa uptakes of the caudate and the putamen in Parkinson’s disease: correlation with the three main symptoms. J Neurol Sci 136: 169–173

    PubMed  CAS  Google Scholar 

  • Overton B, Clarke HG (1992) NMDA receptors regulate dopaminergic neuronal activation. Synapse 10: 131–138

    PubMed  CAS  Google Scholar 

  • Pahwa R, Paolo A, Tröster A, Koller W (1998) Cognitive impairment in Parkinson’s disease. Eur J Neurol 5: 431–441

    PubMed  Google Scholar 

  • Pakkenberg B, Møller A, Gundersen HJG et al. (1991) The absolute number of nerve cells in substantia nigra in normal subjects and in patients with Parkinson’s disease estimated with an unbiased stereological method. J Neurol Neurosurg Psychiatry 54: 30–33

    PubMed  CAS  Google Scholar 

  • Parent A, Hazrati L-N (1995) Functional anatomy of the basal ganglia. I. The cortico-basal-gan-glia-thalamo-cortical loop. Brain Res Rev 20: 91–127

    PubMed  CAS  Google Scholar 

  • Paulus W, Jellinger K (1991) The neuropatholog-ic basis of different clinical subtypes of Parkinson’s disease. J Neuropathol Exp Neurol 50: 143–155

    Google Scholar 

  • Percheron G, Francois C, Yelnik J et al. (1994) The basal ganglia related system of primates: definition, description and informational analysis. In: Percheron G, Mckensie JS, Féger J (eds) The basal ganglia, vol IV. New ideas and data on structure and function. Plenum, New York, pp 3–20

    Google Scholar 

  • Pillon B, Deweer B, Malapani C et al. (1994) Explicit memory disorders of demented parkinsonian patients and underlying neuronal basis. In: Korczyn AD (ed) Dementia in Parkinson’s disease. Monduzzi, Bologna, pp 265–271

    Google Scholar 

  • Pizzolato G, Cagnin A, Rossato A et al. (1996) Striatal dopamine D2 receptor alterations and response to L-DOPA in Parkinson’s disease. Adv Neurol 69: 467–473

    PubMed  CAS  Google Scholar 

  • Pollanen MS, Dickson DW, Bergeron C (1993) Pathology and biology of the Lewy body. J Neuropathol Exp Neurol 52: 183–191

    PubMed  CAS  Google Scholar 

  • Polymeropoulos MH, Higgins JJ, Golbe LI et al. (1996) A gene for Parkinson’s disease maps to 4q21-q23. Science 274: 1197–1199

    PubMed  CAS  Google Scholar 

  • Polymeropoulos MH, Lavedan C, Leroy E et al. (1997) Mutation in alpha synuclein identified in families with Parkinson’s disease. Science 276: 2045–2047

    PubMed  CAS  Google Scholar 

  • Rajput AH (1993) Environmental causation of Parkinson’s disease. Arch Neurol 50: 651–652

    PubMed  CAS  Google Scholar 

  • Rajput AH, Rozdislky B, Ang L, Rajput A (1991) Clinicopathologic observations in essential tremor: report of six cases. Neurology 41: 1422–1424

    PubMed  CAS  Google Scholar 

  • Rice-Evans C, Burdos R (1993) Free radical-and lipid interaction and their pathological consequences. Prog Lipid Res 32: 71–110

    PubMed  CAS  Google Scholar 

  • Riederer P, Dirr A, Goetz M et al. (1992) Distribution of iron in different brain regions and subcellular compartments in Parkinson’s diseases. Ann Neurol 32: 101–104

    Google Scholar 

  • Rioux L, Frohna PA, Joyce JN, Schneider JS (1997) The effects of chronic levodopa treatment on pre-and postsynaptic markers of dopaminergic function in striatum of parkinsonian monkeys. Mov Disord 12: 148–158

    PubMed  CAS  Google Scholar 

  • Rinne JO, Lathinen A, Nagren R et al. (1995a) PET examination of the monoamine transporter with (11C)β-CIT and (11G)β-CFT in early Parkinson’s disease. Synapse 21: 97–103

    PubMed  CAS  Google Scholar 

  • Rinne JO, Leihinnen A, Ruottinen H et al. (1995b) Increased densitiy of dopamine D2 receptors in the putamen, but not in the caudate nucleus in early Parkinson’s disease — a PET study with [C-ll]raclopride. J Neurol Sci 132: 156–161

    PubMed  CAS  Google Scholar 

  • Rinne JO, Burn DJ, Mathias CJ et al. (1995c) Positron emission tomography studies on the dopaminergic system and striatal opioid binding in the olivopontocerebellar atrophy variant of multiple system atrophy. Ann Neurol 37: 568–573

    PubMed  CAS  Google Scholar 

  • Rinne JO, Kuikka JT, Berström MA et al. (1997) Striatal dopamine transporter in Parkinson’s disease; a study with a new radioligand, (123I) B-CIT-FP. Parkinsonism Rel Disord 3: 77–81

    CAS  Google Scholar 

  • Robertson H (1992) Dopamine receptor interactions: some implications for the treatment of Parkinson’s disease. Trends Neurosci 15: 201–206

    PubMed  CAS  Google Scholar 

  • Robertson RG, Clarke CA, Boyce S et al. (1990) The role of striatopallidal neurones utilizing gamma-aminobutyric acid in the pathophysiology of MPTP-induced parkinsonism in the primate: evidence from [(3)H] flunitrazepam autoradiography. Brain Res 531: 95–104

    PubMed  CAS  Google Scholar 

  • Schapira AHV (1995) Oxidative stress in Parkinson’s disease. Neuropathol Appl Neurobiol 21: 3–9

    PubMed  CAS  Google Scholar 

  • Schipper HM, Libermann A, Stopa EG (1998) Neural heme oxygenase-1 expression in idiopathic Parkinson’s disease. Exp Neurol 150: 60–68

    PubMed  CAS  Google Scholar 

  • Seeman P, Van Tol H (1994) Dopamine receptor pharmacology. Trends Pharmacol Sci 15: 264–270

    PubMed  CAS  Google Scholar 

  • Seibyl JP, Marek KL, Quinlan D et al. (1995) Decreased single-photon emission computed tomographic (123 I) β-CIT striatal uptake correlates with symptom severity in Parkinson’s disease. Ann Neurol 38: 589–598

    PubMed  CAS  Google Scholar 

  • Shimada C, Kitayama S, Walther D, Uhl G (1992) Dopamine transporter mRNA: dense expression in ventral midbrain neurons. Mol Brain Res 13: 359–362

    PubMed  CAS  Google Scholar 

  • Shinotoh H, Inoue O, Hirayama K et al. (1993) Dopamine Dl receptors in Parkinson’s disease and striatonigral degeneration. A positron emission tomography study. J Neurol Neurosurg Psychiatry 56: 467–472

    PubMed  CAS  Google Scholar 

  • Sian J, Dexter DT, Lees AJ et al. (1994) Alterations in glutathione levels in Parkinson’s disease and other neurodegenerative disorders affecting basal ganglia. Neurology 36: 348–355

    CAS  Google Scholar 

  • Snow BJ, Tooyama I, Mcgeer EG et al. (1993) Human positron emission tomographic (18F) Fluorodopa studies correlate with dopamine cell counts and levels. Ann Neurol 34:324–330

    PubMed  CAS  Google Scholar 

  • Sofic E, Lange KW, Jellinger K, Riederer P (1992) Reduced and oxidized glutathione in the substantia nigra of patients with Parkinson’s disease. Neurosci Lett 142: 128–130

    PubMed  CAS  Google Scholar 

  • Spencer JPE, Jenner P, Halliwell B (1995) Super-oxide-dependent depletion of reduced glutathione by L-dopa and dopamine. Relevance to Parkinson’s disease. Neuroreport 8: 1480–1484

    Google Scholar 

  • Spillantini MG, Schmidt ML, Lee VMY, Tro-Janowski JQ, Jakes R, Goedert M (1997) α-synuclein in Lewy bodies. Nature 388: 839–840

    PubMed  CAS  Google Scholar 

  • Spillantini MG, Crowther RA, Jakes R et al. (1998) α-synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proc Natl Acad Sci USA 95: 6469–6473

    PubMed  CAS  Google Scholar 

  • Spillantini MG, Bird TD, Ghetti B (1998) Fronto-temporal dementia and Parkinsonism linked to chromosome 17 — a new group of tauopa-thies. Brain Pathol 8: 387–402

    PubMed  CAS  Google Scholar 

  • Stoessl AJ, Ruth TJ (1998) Neuroreceptor imaging: new developments in PET and SPECT imaging of neuroreceptor binding (including dopamine transporters, vesicle transporters and post synaptic receptor sites). Curr Opin Neurol 11: 327–333

    PubMed  CAS  Google Scholar 

  • Strafella A, Ashby P, Munz M et al. (1997) Inhibition of voluntary activity by thalamic stimulation in humans — relevance for the control of tremor. Mov Disord 12: 727–737

    PubMed  CAS  Google Scholar 

  • Sun D, Leung CL, Liem RKH (1996) Phosphorylation of the high molecular weight neurofilament protein (NF-H) by cdk5 and p53. J Biol Chem 271: 14245–14251

    PubMed  CAS  Google Scholar 

  • Taha JM, Favre J, Baumann TK, Burchiel KJ (1997) Tremor control after pallidotomy in patients with Parkinson’s disease — correlation with microrecording findings. J Neurosurg 86: 642–647

    PubMed  CAS  Google Scholar 

  • Tasker RR, Lang AE, Lozano AM (1997) Pallidal and thalamic surgery for Parkinson’s disease. Exp Neurol 144: 35–40

    PubMed  CAS  Google Scholar 

  • Tedroff J, Pedersen M, Aquilonius SM et al. (1996) Levodopa-induced changes in synaptic dopamine in patients with Parkinson’s disease as measured by [C-11]raclopride displacement and PET. Neurology 46: 1430–1436

    PubMed  CAS  Google Scholar 

  • Tipton KF, Singer TP (1993) Advances in our understanding of the mechanisms of the neurotoxicity of MPTP and related compounds. J Neurochem 61: 1191–1206

    PubMed  CAS  Google Scholar 

  • Tissingh G, Booij J, Winogrodzka A et al. (1996) IBZM-and CIT-SPECT of the dopaminergic system in parkinsonism. J Neural Transm 50 [Suppl]: 31–37

    Google Scholar 

  • Tissingh G, Bergmans P, Booij J et al. (1998) Drug-naive patients with Parkinson’s disease in Hoehn and Yahr stages I and II show a bilateral decrease in striatal dopamine transporters as revealed by 123I-β-Cit SPECT. J Neurol 245: 14–20

    PubMed  CAS  Google Scholar 

  • Tompkins MM, Hill WD (1997) Contribution of somal Lewy bodies to neuronal death. Brain Res 775: 24–29

    PubMed  CAS  Google Scholar 

  • Tompkins MM, Basgall EJ, Zamrini E, Hill WD (1997) Apoptotic-like changes in Lewy body-associated disorders and normal aging in substantia nigral neurons. Am J Pathol 150: 119–131

    PubMed  CAS  Google Scholar 

  • Trojanowski JQ, Lee VMY (1994) Phosphorylation of neuronal cytoskeletal proteins in Alzheimer’s disease and Lewy body dementia. Ann NY Acad Sci 747: 92–109

    PubMed  CAS  Google Scholar 

  • Trojanowski JQ, Lee VMY (1998) Aggregation of neurofilament and α-synuclein proteins in Lewy bodies — implications for the pathogenesis of Parkinson’s disease and Lewy body dementia. Arch Neurol 55: 151–152

    PubMed  CAS  Google Scholar 

  • Trojanowski JQ, Schmidt ML, Shin R-W et al. (1993) Altered tau and neurofilament proteins in neurodegenerative diseases: diagnostic implications for Alzheimer’s disease and Lewy body dementias. Brain Pathol 3: 45–54

    PubMed  CAS  Google Scholar 

  • Turjanski N, Lees AJ, Brooks DJ (1997) In vivo studies on striatal dopamine D1 and D2 site binding in l-dopa treated Parkinson’s disease patients with and without dyskinesias. Neurology 49: 717–723

    PubMed  CAS  Google Scholar 

  • Uhl GR (1998) Hypothesis: the role of dopaminergic transporters in selective vulnerability of cells in Parkinson’s disease. Ann Neurol 43: 555–560

    PubMed  CAS  Google Scholar 

  • Uhl GR, Walther D, Mash D et al. (1994) Dopamine transporter messenger RNA in Parkinson’s disease and control substantia nigra neurons. Ann Neurol 35: 494–498

    PubMed  CAS  Google Scholar 

  • Varastet M, Riche D, Maziere M, Hantraye P (1994) Chronic MPTP treatment reproduces in baboons the differential vulnerability of mesencephalic dopaminergic neurons in Parkinson’s disease. Neuroscience 63: 47–56

    PubMed  CAS  Google Scholar 

  • Vickers JC (1997) A cellular mechanism for the neuronal changes underlying Alzheimer’s disease. Neuroscience 78: 629–639

    PubMed  CAS  Google Scholar 

  • Vieregge P (1994) Genetic factors in the etiology of idiopathic Parkinson’s disease. J Neural Transm [PD-Sect] 8: 1–37

    CAS  Google Scholar 

  • Vila M, Herrero MT, Levy R et al. (1996) Consequences of nigrostriatal denervation on the γ-aminobutyric acidic neurons of substantia nigra pars reticulata and superior colliculus in parkinsonian syndromes. Neurology 46: 502–509

    Google Scholar 

  • Wallace DC (1992) Mitochondrial genetics: a paradigma for aging and degenerative diseases? Science 256: 628–632

    PubMed  CAS  Google Scholar 

  • Weihmüller FB, Ulas J, Nguyen L et al. (1992) Elevated NMDA receptors in Parkinson’s striatum. Neuroreport 3: 977–980

    PubMed  Google Scholar 

  • Wilhelmsen KC, Wszolek ZK (1996) Is there a genetic susceptibility to idiopathic parkinsonism? Parkinsonism Rel Disord 1: 75–84

    Google Scholar 

  • Wills AJ, Thompson PD, Findley LJ, Brooks DJ (1996) A positron emission tomography study of primary orthostatic tremor. Neurology 46: 747–752

    PubMed  CAS  Google Scholar 

  • Wilson JM, Levey AT, Rajput A et al. (1996) Differential changes in neurochemical markers of striatal dopamine nerve terminals in idiopathic Parkinson’s disease. Neurology 47: 718–726

    PubMed  CAS  Google Scholar 

  • Wszolek ZK, Lynch T, Wilhelmsen KC (1997) Rapidly progressive autosomal dominant parkinsonism and dementia with pallido-ponto-nigral degeneration (PPND) and dis-inhibition-dementia-parkinsonism-amyotro-phy complex (DDPAC) are clinically distinct conditions that are both linked to 17q21-22. Parkinsonism Rel Disord 3: 67–76

    CAS  Google Scholar 

  • Wüllner U, Kornhuber J, Weller M, Schultz JB, Löschmann PA, Riederer P (1999) Cell death and apoptosis regulating proteins in Parkinson’s disease — a cautionary note. Acta Neu-ropathol 97: 408–412

    Google Scholar 

  • Yamada T (1996) Viral etiology of Parkinson’s disease: focus on influenza A virus. Parkinsonism Rel Disord 2: 113–121

    CAS  Google Scholar 

  • Yoritaka A, Hattori N, Uchida K et al. (1996) Immunohistochemical detection of 4-hydro-xynonenal protein adducts in Parkinson’s disease. Proc Natl Acad Sci 93: 2696–2701

    PubMed  CAS  Google Scholar 

  • Yoritaka A, Hattori N, Mori H et al. (1997) An immunohistochemical study on manganese superoxide dismutase in Parkinson’s disease. J Neurol Sci 148: 181–186

    PubMed  CAS  Google Scholar 

  • Youdim MBH (1994) Inorganic neurotoxins in neurodegenerative disorders without primary dementia. In: Calne DB (ed) Neurodegenerative diseases. Saunders, Philadelphia, pp 251–276

    Google Scholar 

  • Yung KKL, Smith AD, Levey AL, Bolam JP (1996) Synaptic connections between spiny neurons of the direct and indirect pathways in the neostriatum of the rat — evidence from dopamine receptor and neuropeptide immunostaining. Eur J Neurosci 8: 861–869

    PubMed  CAS  Google Scholar 

  • Zeevalk GD, Bernard LP, Nicklas WJ (1998) Role of oxidative stress and the glutathione system in loss of dopamine neurons due to impairment of energy metabolism. J Neurochem 70: 1421–1430

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Wien

About this chapter

Cite this chapter

Jellinger, K.A. (1999). Parkinson-Krankheit: Pathophysiologie und pathogenetische Faktoren. In: Riederer, P., Laux, G., Pöldinger, W. (eds) Neuro-Psychopharmaka Ein Therapie-Handbuch. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6400-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6400-6_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7315-2

  • Online ISBN: 978-3-7091-6400-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics