Skip to main content

Multiple mechanisms of action: the pharmacological profile of budipine

  • Conference paper
Diagnosis and Treatment of Parkinson’s Disease — State of the Art

Part of the book series: Journal of Neural Transmission. Supplementa ((NEURAL SUPPL,volume 56))

Summary

Four major components of the mechanism of action have been identified for the antiparkinsonian drug budipine up to now. 1) The primary action of budipine is an indirect dopaminergic effect as shown by facilitation of dopamine (DA) release, inhibition of monoamine oxidase type B (MAO-B) and of DA (re)up-take and stimulation of aromatic L-amino acid decar-boxylase (AADC), which in sum might be responsible for enhancing the endogenous dopaminergic activity. 2) Radioligand and functional studies at the N-methyl-D-aspartate (NMDA) type glutamate receptor characterize budipine as a low-affinity, uncompetitive antagonist with fast kinetics and moderate voltage-dependency at the phencyclidine (PCP) binding site, comparable to that observed with amantadine, thereby counteracting an increased excitatory glutamatergic activity. 3) The antimuscarinic action of budipine, verified by functional and binding studies at native muscarinic M1-M3 and human recombinant ml-m5 receptor subtypes in vitro, is up to 125-fold weaker than that of biperiden and corresponds to its approximately 100-fold lower potency to cause experimentally-induced peripheral antimuscarinic effects and explains only part of its high potency, which equals biperiden, to suppress cholinergically evoked tremor. 4) An additional inhibition of striatal gamma-aminobutyric acid (GABA) release by budipine may be beneficial to suppress an increased striatal GABAergic output activity. The contribution of other observed effects to the therapeutic action of budipine, i.e. weak stimulation of noradrenaline and serotonin release, binding to brain sigma1, receptors and blockade of histamine H1 receptors, is not yet clear. By means of these multiple mechanisms, budipine might correct the imbalance of striatal output pathways by restoring DA levels in the striatum, and positively influence the secondary changes in other transmitter systems (glutamate, acetylcholine, GABA) observed in Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurol Sci 12: 366–375

    Article  CAS  Google Scholar 

  • Ballard P, Tetrud JW, Langston W (1985) Permanent human parkinsonism due to l-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Seven cases. Neurology 35: 949–959

    Article  PubMed  CAS  Google Scholar 

  • Bergman H, Wichmann T, DeLong MR (1990) Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 249: 1436–1438

    Article  PubMed  CAS  Google Scholar 

  • Bien S, Wörz R (1985) Budipine-treatment of neuroleptic-induced parkinsonism. In: Gerstenbrand F, Poewe W, Stern G (eds) Clinical experiences with budipine in Parkinson therapy. Springer, Berlin Heidelberg New York Tokyo, pp 169–175

    Chapter  Google Scholar 

  • Brand U, Menge HG (1980) Antagonismus gegen den Tremor nach N-Carbamoyl-2-(2,6-dichlorphenyl)-acetamidin HCl (LON-954) und Oxotremorin. Eine vergleichende Studie zum Wirkungsmechanismus. Arzneim Forsch/Drug Res 30: 1242–1243

    Google Scholar 

  • Brotchie JM, Mitchell IJ, Sambrook MA, Crossman AR (1991) Alleviation of parkinsonism by antagonism of excitatory amino acid transmission in the medial segment of the globus pallidus in rat and primate. Mov Disord 6: 133–138

    Article  PubMed  CAS  Google Scholar 

  • Brown RE, Fedorov NB, Haas HL, Reymann KG (1995) Histaminergic modulation of synaptic plasticity in area CA1 of rat hippocampal slices. Neuropharmacology 34: 181–190

    Article  PubMed  CAS  Google Scholar 

  • Burt DR, Creese J, Snyder SH (1977) Antischizophrenic drugs: chronic treatment elevates dopamine receptor binding in brain. Science 196: 326–328

    Article  PubMed  CAS  Google Scholar 

  • Carlsson M, Carlsson A (1990) Interactions between glutamatergic and monoaminergic systems within the basal ganglia — implications for schizophrenia and Parkinson’s disease. Trends Neurosci 13: 272–276

    Article  PubMed  CAS  Google Scholar 

  • Coward DM, Dogget NS, Thomas JE (1977) Central transmitter involvement in LON-954-induced tremorgenesis. Neuropharmacology 16: 479–484

    Article  PubMed  CAS  Google Scholar 

  • Debonnel G (1995) Current hypotheses on sigma receptors and their physiological role: possible implications in psychiatry. J Psychiatr Neurosci 18: 157–172

    Google Scholar 

  • Di Paola R, Utti RJ (1996) Early detection of Parkinson’s disease. Implications for treatment. Drugs Aging 9: 159–168

    Article  PubMed  Google Scholar 

  • Ebadi M, Srinivasan SK, Baxi MD (1996) Oxidative stress and antioxidant therapy in Parkinson’s disease. Progr Neurobiol 48: 1–19

    Article  CAS  Google Scholar 

  • Eltze M (1980) The effects of prodipine and budipine on [14C]5-HT uptake and release by human blood platelets. Arzneim Forsch/Drug Res 30: 1129–1134

    CAS  Google Scholar 

  • Fisher A, Biggs CS, Starr MS (1997) Evidence that glutamate regulates dopamine synthesis via aromatic L-amino acid decarboxylase. Br J Pharmacol 120 [Suppl]: 239P

    Article  Google Scholar 

  • Gerlach M, Jutzi P, Stasch JP, Przuntek H (1983) Synthese und pharmakologische Eigenschaften von silierten Dopaminen und 4,4-Diphenylpiperidinen. Z Naturforsch 38b: 237–242

    CAS  Google Scholar 

  • Giralt MT, Bonnano G, Raiteri M (1990) GABA terminal autoreceptors in the pars compacta and in the pars reticulata of substantia nigra are GABA B. Eur J Pharmacol 175: 137–144

    Article  PubMed  CAS  Google Scholar 

  • Greenamyre JT, O’Brian CF (1991) N-methyl-D-aspartate antagonists in the treatment of Parkinson’s disease. Arch Neurol 48: 977–981

    Article  PubMed  CAS  Google Scholar 

  • Hackmack G, Menge HG, Eistetter K, Krüger U, Schaefer H, Klosa J (1979) 4,4-Diphenylpiperidine, ein neuer Substanztyp für die Therapie des Morbus Parkinson. Österr Chem Ztschr 80: 61–62

    Google Scholar 

  • Hadjiconstantinou M, Rosetti ZL, Wemlinger TA, Neff NH (1995) Dizozilpine enhances striatal tyrosine hydroxylase and aromatic L-amino acid decarboxylase activity. Eur J Pharmacol 289: 97–101

    Article  PubMed  CAS  Google Scholar 

  • Hertting G, Zumstein A, Jackisch R, Hoffmann I, Starke K (1980) Modulation by endogenous dopamine of the release of acetylcholine in the caudate nucleus of the rabbit. Naunyn-Schmiedeb Arch Pharmacol 315: 111–117

    Article  CAS  Google Scholar 

  • Hornykiewicz O (1966) Dopamine (3-hydroxytyramine) and brain function. Pharmacol Rev 18: 925–964

    PubMed  CAS  Google Scholar 

  • Iizuka J, Fischer R (1986) Beeinflussung des Parkinson-Tremors durch Budipin: Eine Vergleichsstudie mit Amantadin. Nervenarzt 57: 184–186

    PubMed  CAS  Google Scholar 

  • Jackisch R, Huang HY, Reimann W, Limberger N (1993) Effects of the antiparkinsonian drug budipine on neurotransmitter release in central nervous system tissues in vitro. J Pharmacol Exp Ther 264: 889–898

    PubMed  CAS  Google Scholar 

  • Jackisch R, Kruchen A, Sauermann W, Hertting G, Feuerstein TJ (1994) The antiparkinsonian drugs budipine and biperiden are use-dependent (uncompetitive) NMDA receptor antagonists. Eur J Pharmacol 264: 207–211

    Article  PubMed  CAS  Google Scholar 

  • Jellinger K, Bliesath H (1987) Adjuvant treatment of Parkinson’s disease with budipine: A double-blind trial versus placebo. J Neurol 234: 280–282

    Article  PubMed  CAS  Google Scholar 

  • Keim C, Mutschier E, Lambrecht G, Eltze M (1998) Affinity of the antiparkinsonian drug, budipine, on native muscarinic M1-M3 and human recombinant ml-m5 receptors. Naunyn-Schmiedeb Arch Pharmacol 357 [Suppl]: R23

    Google Scholar 

  • Kornhuber J, Weller M (1995) Predicting psychotomimetic properties of PCP-like NMDA receptor antagonists. In: Fog R, Gerlach J, Hemmingsen R, Krogsgaard-Larsen P, Thaysen JH (eds) Schizophrenia — an integrated view. Alfred Benzon Symposium 38. Munksgaard, Copenhagen, pp 314–325

    Google Scholar 

  • Kornhuber J, Weller M (1997) Psychotogenicity and N-methyl-D-aspartate receptor antagonism: Implications for neuroprotective pharmacotherapy. Biol Psychiatry 41: 135–144

    Article  PubMed  CAS  Google Scholar 

  • Kornhuber J, Weller M, Schoppmeyer K, Riederer P (1994) Amantadine and memantine are NMDA receptor antagonists with neuroprotective properties. J Neural Transm [Suppl] 43: 91–104

    CAS  Google Scholar 

  • Kornhuber J, Herr B, Thome J, Riederer P (1995) The antiparkinsonian drug budipine binds to NMDA and sigma receptors in postmortem human brain tissue. J Neural Transm [Suppl] 46: 131–137

    CAS  Google Scholar 

  • Klockgether T, Turski L (1989) Excitatory amino acids and the basal ganglia: implications for the therapy of Parkinson’s disease. Trends Neurosci 12: 285–286

    Article  PubMed  CAS  Google Scholar 

  • Klockgether T, Turski L (1993) Towards the understanding of the role of glutamate in experimental parkinsonism: agonist-sensive sites in the basal ganglia. Ann Neurol 34: 585–593

    Article  PubMed  CAS  Google Scholar 

  • Klockgether T, Jacobsen P, Löschmann PA, Turski L (1993) The antiparkinsonian agent budipine is an N-methyl-D-aspartate antagonist. J Neural Transm [P D Sect] 5: 101–106

    Article  CAS  Google Scholar 

  • Klockgether T, Wüllner U, Steinbach JP, Petersen V, Turski L, Löschmann PA (1996) Effect of the antiparkinsonian drug budipine on central neurotransmitter systems. Eur J Pharmacol 301: 67–73

    Article  PubMed  CAS  Google Scholar 

  • Krüger H, Kohlhepp W, Reimann G, Przuntek H (1988) Prophylactic treatment of cluster headache with budipine. Headache 28: 344–346

    Article  PubMed  Google Scholar 

  • Kuhn W, Russ H, Dettner O, Gerlach M, Przuntek H (1987) Interaction of deprenyl and budipine with MAO-B in vivo and in vitro. Neuroscience 22 [Suppl]: S527

    Google Scholar 

  • Löschmann PA, Lange KW, Kunow M, Rettig KJ, Jähnig P, Honore T, Turski L, Wachtel H, Jenner P, Marsden CD (1991) Synergism of the AMPA-antagonist NBQX and the NMDA-antagonist CPP with L-DOPA in models of Parkinson’s disease. J Neural Transm [P D Sect] 3: 203–207

    Article  Google Scholar 

  • Lupp A, Lücking CH, Koch R, Jackisch R, Feuerstein TJ (1992) Inhibitory effects of the antiparkinsonian drugs memantine and amantadine on N-methyl-D-aspartate-evoked acetylcholine release in the rabbit caudate nucleus. J Pharmacol Exp Ther 263: 717–724

    PubMed  CAS  Google Scholar 

  • Lupp A, Karge E, Klinger W (1996) Antioxidant properties of NMDA-receptor agonists and antagonists on the microsomal cytochrome P-450 system of rat livers in vitro. Naunyn-Schmiedb Arch Pharmacol 353 [Suppl]: R108

    Google Scholar 

  • McBain CJ, Mayer ML (1994) N-methyl-D-aspartatic acid receptor structure and function. Physiol Rev 74: 723–760

    Article  PubMed  CAS  Google Scholar 

  • Menge HG, Brand U (1985) Pharmacologic bases of antiparkinsonian therapy. In: Gerstenbrand F, Poewe W, Stern G (eds) Clinical experiences with budipine in Parkinson therapy. Springer, Berlin Heidelberg New York Tokyo, pp 82–92

    Chapter  Google Scholar 

  • Menge HG, Brand U, Dittmann EC, Eltze M, Gernandt W, Gönne S, Müller H, Steinijans V (1982) Zusammenfassende Darstellung der Pharmakologie von Budipin, einem neuen 4,4-Diphenylpiperidin-Derivat für die Parkinson-Therapie. Arzneim Forsch/Drug Res 32: 85–98

    CAS  Google Scholar 

  • Mihatsch W, Russ H, Przuntek H (1988) Intracerebroventricular administration of 1-methyl-4-phenylpyridinium ion in mice: effects of simultaneously administered nomifensine, deprenyl and 1-t-butyl-4,4-diphenylpiperidine. J Neural Transm 71: 177–188

    Article  PubMed  CAS  Google Scholar 

  • Monnet FP, Debonnel G, DeMontigny C (1992) In vivo electrophysiological evidence for a selective modulation of N-methyl-D-aspartate-induced neuronal activation in rat CA3 dorsal hippocampus by sigma ligands. J Pharmacol Exp Ther 261: 123–130

    PubMed  CAS  Google Scholar 

  • Neuser D, Stasch JP, Witteler M, Kuhn W, Gerlach M, Jutzi P, Przuntek H (1983) The interaction of 1-alkyl-4,4-diphenylpiperidines with opiate receptors. Eur J Pharmacol 87: 315–318

    Article  PubMed  CAS  Google Scholar 

  • Niznik HB, Tyndale RF, Sallee FR, Gonzales FJ, Hardwick JP, Inaba T, Kalow W (1990) The dopamine transporter and cytochrome P-450 IID1 (debrisoquine-4-hydroxylase) in brain: resolution and identification of two distinct [3H]GBR-12935 binding proteins. Arch Biochem Biophys 276: 424–432

    Article  PubMed  CAS  Google Scholar 

  • Offermeier J, van Rooyen JM (1985) The pharmacodynamics of budipine on central neurotransmitter systems. In: Gerstenbrand F, Poewe W, Stern G (eds) Clinical experiences with budipine in Parkinson therapy. Springer, Berlin Heidelberg New York Tokyo, pp 93–105

    Chapter  Google Scholar 

  • Oppel F (1985) Long-term treatment with budipine. In: Gerstenbrand F, Poewe W, Stern G (eds) Clinical experiences with budipine in Parkinson therapy. Springer, Berlin Heidelberg New York Tokyo, pp 163–168

    Chapter  Google Scholar 

  • Parsons CG, Quack G, Bresink I, Baran L. Przegalinski E, Kostowski W, Krzascik P, Hartmann S, Danysz W (1995) Comparison of the potency, kinetics and voltage-dependency of a series of uncompetitive NMDA receptor antagonists in vitro with anticonvulsive and motor impairment activity in vivo. Neuropharmacology 34: 1239–1258

    Article  PubMed  CAS  Google Scholar 

  • Parsons CG, Hartmann S, Spielmanns P (1998) Budipine is a low affinity, N-methyl-D-aspartate receptor antagonist: patch clamp studies in cultured striatal, hippocampal, cortical and superior colliculus neurones. Neuropharmacology 37: 719–727

    Article  PubMed  CAS  Google Scholar 

  • Payne GW, Neuman RS (1997) Effect of hypomagnesia on histamine H1 receptor mediated facilitation of NMDA responses. Br J Pharmacol 121: 199–204

    Article  PubMed  CAS  Google Scholar 

  • Perry TL, Javoy-Agid F, Fibiger HC (1983) Striatal GABAergic neuronal activity is not reduced in Parkinson’s disease. J Neurochem 40: 1120–1123

    Article  PubMed  CAS  Google Scholar 

  • Poewe W, Gerstenbrand F, Ransmayr G (1985) Clinical experience with budipine in parkinsonian therapy. In: Gerstenbrand F, Poewe W, Stern G (eds) Clinical experiences with budipine in Parkinson therapy. Springer, Berlin Heidelberg New York Tokyo, pp 122–128

    Chapter  Google Scholar 

  • Porter RHP, Greenamyre JT (1995) Regional variation in the pharmacology of NMDA receptor channel blockers: implications for therapeutic potential. J Neurochem 64: 614–623

    Article  PubMed  CAS  Google Scholar 

  • Przegalinski E, Bigajska K, Lewandowska A (1982) The effect of budipine on the central serotonergic system. Pol J Pharmacol Pharm 34: 309–315

    PubMed  CAS  Google Scholar 

  • Przuntek H, Stasch JP (1985) Biochemical and pharmacologic aspects of the mechanism of action of budipine. In: Gerstenbrand F, Poewe W, Stern G (eds) Clinical experiences with budipine in Parkinson therapy. Springer, Berlin Heidelberg New York Tokyo, pp 107–112

    Chapter  Google Scholar 

  • Przuntek H, Russ H, Henning K, Pindur U (1985) The protective effect of 1-t-butyl-4,4-diphenylpiperidine against the nigrostriatal neurodegeneration caused by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Life Sci 37: 1195–1200

    Article  PubMed  CAS  Google Scholar 

  • Quirion R, Bowen WD, Itzhak Y, Junien JL, Musacchio JM, Rothmann RB, Su TP, Tam SW, Taylor DP (1992) A proposal for the classification of sigma binding sites. Trends Pharmacol Sci 13: 85–86

    Article  PubMed  CAS  Google Scholar 

  • Reimann W, Zumstein A, Jackisch R, Starke K, Hertting G (1979) Effect of extracellular dopamine on the release of dopamine in the rabbit caudate nucleus: evidence for a dopaminergic feedback inhibition. Naunyn-Schmideb Arch Pharmacol 306: 53–60

    Article  CAS  Google Scholar 

  • Ricaurte GA, Langston JW, DeLanney LE, Irwin I, Brooks JP (1985) Dopamine uptake blockers protect against the dopamine depleting effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the mouse striatum. Neurosci Lett 59: 265–270

    Article  Google Scholar 

  • Russ H, Stasch JP, Witteler M, Neuser D, Przuntek (1983) Der Effekt von Budipin auf das Parkinson Syndrom. Versuch einer neuropharmakologischen Erklärung. In: Seitz D (ed) Verhandlungen der Deutschen Gesellschaft für Neurologic Springer, Berlin Heidelberg New York Tokyo, pp 757–760

    Google Scholar 

  • Russ H, Pindur U, Przuntek H (1986) The interaction of 1-alkyl-4,4-diphenylpiperidines with the 1-methyl-1,2,3,6-tetrahydropyridine receptor binding site. J Neural Transm 65: 157–165

    Article  PubMed  CAS  Google Scholar 

  • Schaefer H, Hackmack K, Eistetter K, Krüger U, Menge HG, Klosa J (1984) Synthese, physikalis ch-chemische Eigenschaften und orientierende pharmakologische Untersuchungen von Budipin und verwandten 4,4-Diphenylpiperidinen. Arzneim Forsch/Drug Res 34: 233–240

    CAS  Google Scholar 

  • Schmidt WJ, Bubser M (1989) Anticataleptic effects of the N-methyl-D-aspartate antagonist MK-801 in rats. Pharmacol Biochem Behav 32: 621–629

    Article  PubMed  CAS  Google Scholar 

  • Siegfried J, Fischer R (1983) La place pour une nouvelle substance chimique dans le traitment de la maladie de Parkinson et la role de la budipine. Med et Hyg 41: 1977–1981

    Google Scholar 

  • Siegfried J, Fischer R (1985) Budipine: A new chemical substance in the treatment of Parkinson’s disease. In: Gerstenbrand F, Poewe W, Stern G (eds) Clinical experiences with budipine in Parkinson therapy. Springer, Berlin Heidelberg New York Tokyo, pp 152–157

    Chapter  Google Scholar 

  • Soria-Jasso LE, Arias-Montano JA (1996) Histamine H1 receptor activation stimulates [3H]GABA release from human astrocytoma U373 MG cells. Eur J Pharmacol 318: 185–192

    Article  PubMed  CAS  Google Scholar 

  • Spieker S, Löschmann P, Jentgens C, Boose A, Klockgether T, Dichgans (1995) Tremorlytic activity of budipine. a quantitative study with long-term tremor recordings. Clin Neuropharmacol 18: 266–272

    Article  PubMed  CAS  Google Scholar 

  • Starr MS (1995) Antiparkinsonian actions of glutamate antagonists — alone and with L-DOPA: a review of evidence and suggestions for possible mechanisms. J Neural Transm [P D Sect] 10: 141–185

    Article  CAS  Google Scholar 

  • Starr MS, Fisher A, Biggs CS (1997) Effect of glutamate antagonists on dopamine synthesis. Amino Acids 15: 55

    Google Scholar 

  • Stasch JP, Ruß H, Schacht M, Witteler M, Neuser D, Gerlach M, Leven M, Kuhn W, Jutzi P, Przuntek H (1988) 4,4-Diphenylpiperidine derivatives and their sila analogues. A comparative study of their interaction with neuronal receptor binding sites and synaptosomal monoamine uptake. Arzneim Forsch/Drug Res 38: 1075–1078

    CAS  Google Scholar 

  • Turski L, Bressler K, Klockgether T, Stephens DN (1990) Differential effects of the excitatory amino acid antagonists, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and 3-(±)-2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP), on spinal reflex activity in mice. Neurosci Lett 113: 66–71

    Article  PubMed  CAS  Google Scholar 

  • Walker JM, Bowen WD, Walker FO, Matsumoto RR, De Costa B, Rice KC (1990) Sigma receptors: biology and function. Pharmacol Rev 42: 355–402

    PubMed  CAS  Google Scholar 

  • Wang Y (1985) Observations on the therapeutic effect of budipine on Parkinson’s disease. In: Gerstenbrand F, Poewe W, Stern G (eds) Clinical experiences with budipine in Parkinson therapy. Springer, Berlin Heidelberg New York Tokyo, pp 158–162

    Google Scholar 

  • Zech K, Sturm E, Ludwig G (1985) Pharmacokinetics and metabolism of budipine in animals and humans. In: Gerstenbrand F, Poewe W, Stern G (eds) Clinical experiences with budipine in Parkinson therapy. Springer, Berlin Heidelberg New York Tokyo, pp 113–121

    Chapter  Google Scholar 

  • Zhu MY, Juorio AV, Paterson IA, Boulton AA (1992) Regulation of aromatic L-amino acid decarboxylase by dopamine receptors in rat brain. J Neurochem 58: 636–641

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Wien

About this paper

Cite this paper

Eltze, M. (1999). Multiple mechanisms of action: the pharmacological profile of budipine. In: Przuntek, H., Müller, T. (eds) Diagnosis and Treatment of Parkinson’s Disease — State of the Art. Journal of Neural Transmission. Supplementa, vol 56. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6360-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6360-3_4

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83275-2

  • Online ISBN: 978-3-7091-6360-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics