Skip to main content

Free radical scavengers: chemical concepts and clinical relevance

  • Conference paper
Diagnosis and Treatment of Parkinson’s Disease — State of the Art

Part of the book series: Journal of Neural Transmission. Supplementa ((NEURAL SUPPL,volume 56))

Summary

Free radicals are involved in the pathology of many CNS disorders, like Parkinson’s disease, Alzheimer’s disease, or stroke. This discovery lead to the development of many radical scavengers for the clinical treatment of neurodegenerative diseases. In this review, the different chemical concepts for free radical scavenging will be discussed: nitrons, thiols, iron chelators, phenols, and catechols. Especially catechols, like the naturally occurring flavonols, the synthetic drug nitecapone, or the endogenous catacholamines and their metabolites, are of great interest, as they combine iron chelating with radical scavenging activity. We present data on the radical scvenging activity of dopamine and apomorphine, which prevent lipid peroxidation in rat brain mitochondria and protect PC12 cells against H2O2-toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anghileri LJ, Maincent P, Cordova MA, Thouvenot P (1994) The role of ATP as a mediator in the action of iron complexes on cellular calcium homeostasis. Biol Trace Elem Res 46: 103–111

    Article  PubMed  CAS  Google Scholar 

  • Ben-Shachar D, Riederer P, Youdim MBH (1991) Iron-melanin interaction and lipid peroxidation: implications for Parkinson’s disease. J Neurochem 57: 1609–1614

    Article  PubMed  CAS  Google Scholar 

  • Ben-Shachar D, Livne E, Spanier I, Zuk R, Youdim MBH (1993) Iron modulates neuroleptic-induced effects related to the dopaminergic system. Isr J Med Sci 29: 587–592

    PubMed  CAS  Google Scholar 

  • Ben-Shachar D, Livne E, Spanier I, Leenders KL, Youdim MBH (1994) Typical and atypical neuroleptics induce alteration in blood-brain barrier and brain 59FeCl3 uptake. J Neurochem 62: 1112–1118

    Article  PubMed  CAS  Google Scholar 

  • Benov LC, Benchev IC, Monovich OH (1990) Thiol antidotes effect on lipid peroxidation in mercury-poisoned rats. Chem Biol Interact 76: 321–332

    Article  PubMed  CAS  Google Scholar 

  • Cadet JL, Ali S, Epstein C (1994) Involvement of oxygen-based radicals in metham-phetamine-induced neurotoxicity: evidence from the use of CuZnSOD transgenic mice. Ann N Y Acad Sci 738: 388–391

    Article  PubMed  CAS  Google Scholar 

  • Cao X, Phillis JW (1995) The free radical scavenger, α-lipoic acid, protects against cerebral ischemia-reperfusion injury in gerbils. Free Radic Res 23: 365–370

    Article  PubMed  CAS  Google Scholar 

  • Carney JM, Kindy MS, Smith CD, Wood K, Tatsuno T, Wu JF, Landrum WR, Floyd RA (1994) Gene expression and functional changes after acute ischemia: age-related differences in outcome and mechanisms. In: Hartmann A, Yatsu F, Kuschinsky W (eds) Cerebral ischemia and basic mechanisms. Springer, Berlin Heidelberg New York Tokyo, pp 301–311

    Chapter  Google Scholar 

  • Cerruti C, Sheng P, Ladenheim B, Epstein CJ, Cadet JL (1995) Involvement of oxidative and L-arginine-NO pathways in the neurotoxicity of drugs of abuse in vitro. Clin Exp Pharmacol Physiol 22: 381–382

    Article  PubMed  CAS  Google Scholar 

  • Cheng HY, Liu T, Feuerstein G, Barone FC (1993) Distribution of spin-trapping compounds in rat blood and brain: in vivo microdialysis determination. Free Radic Biol Med 14: 243–250

    Article  PubMed  CAS  Google Scholar 

  • Chiueh CC, Krishna G, Tulsi P, Obata T, Lang K, Huang SJ, Murphy DL (1992) Intracranial microdialysis of salicylic acid to detect hydroxyl radical generation through dopamine autooxidation in the caudate nucleus: Effects of MPP+. Free Radic Biol Med 13: 581–583

    Article  PubMed  CAS  Google Scholar 

  • Ciuffi M, Gentilini G, Franchi Micheli S, Zilletti L (1992) D-penicillamine affects lipid peroxidation and iron content in the rat brain cortex. Neurochem Res 17: 1241–1246

    Article  PubMed  CAS  Google Scholar 

  • Colton CA, Pagan F, Snell J, Colton JS, Cummins A, Gilbert DL (1995) Protection from oxidation enhances the survival of cultured mesencephalic neurons. Exp Neurol 132: 54–61

    Article  PubMed  CAS  Google Scholar 

  • Ercal N, Treeratphan P, Hammond TC, Matthews RH, Grannemann NH, Spitz DR (1996) In vivo indices of oxidative stress in lead-exposed C57BL/6 mice are reduced by treatment with meso-2,3-dimercaptosuccinic acid or N-acetylcysteine. Free Radic Biol Med 21: 157–161

    Article  PubMed  CAS  Google Scholar 

  • Esterbauer H (1980) Aldehydes of lipid peroxidation. In: McBrien DCH, Slater TF (eds) Free radicals, peroxidation, and cancer. Academic Press, London, pp 101–122

    Google Scholar 

  • Fahn S, Cohen G (1992) The oxidant stress hypothesis in Parkinson’s disease: evidence supporting it. Ann Neurol 32: 804–812

    Article  PubMed  CAS  Google Scholar 

  • Ferrari G, Yan CY, Greene LA (1995) N-acetylcysteine (D-and L-stereoisomers) prevents apoptotic death of neuronal cells. J Neurosci 15: 2857–2866

    PubMed  CAS  Google Scholar 

  • Folbergrova J, Zhao Q, Katsura K, Siesjö BK (1995) N-tert-butyl-α-phenylnitrone improves recovery of brain energy state in rats following transient focal ischemia. Proc Natl Acad Sci U S A 92: 5057–5061

    Article  PubMed  CAS  Google Scholar 

  • Froissard P, Monrocq H, Duval D (1997) Role of glutathione metabolism in the glutamate-induced programmed cell death of neuronal-like PC12 cells. Eur J Pharmacol 326: 93–99

    Article  PubMed  CAS  Google Scholar 

  • Galey JB, Dumats J, Beck I, Fernandez B, Hocquaux M (1995) N,N′-bis-dibenzyl ethylenediaminediacetic acid (DBED): a site-specific hydroxyl radical scavenger acting as an “oxidative stress activatable” iron chelator in vitro. Free Radic Res 22: 67–86

    Article  PubMed  CAS  Google Scholar 

  • Gancher ST, Nutt JG, Woodward WR (1995) Apomorphine infusional therapy in Parkinson’s disease: clinical utility and lack of tolerance. Mov Disord 10: 37–43

    Article  PubMed  CAS  Google Scholar 

  • Gassen M, Glinka Y, Pinchasi B, Youdim MBH (1996) Apomorphine is a highly potent free radical scavenger in rat brain mitochondrial fraction. Eur J Pharmacol 308: 219–225

    Article  PubMed  CAS  Google Scholar 

  • Gassen M, Gross A, Pinchasi B, Youdim MBH (1997) Apomorphine enantiomers protect cultured pheochromocytoma (PC12) cells from oxidative stress induced by H2O2 and 6-hydroxydopamine. Mov Disord in press

    Google Scholar 

  • Gerlach M, Riederer P, Przuntek H, Youdim MBH (1991) MPTP mechanisms of neurotoxicity and their implications for Parkinson’s disease. Eur J Pharmacol 208: 273–286

    Article  PubMed  CAS  Google Scholar 

  • Gerlach M, Ben-Shachar D, Riederer P, Youdim MBH (1994) Altered brain metabolism of iron as a cause of neurodegenerative diseases? J Neurochem 63: 793–807

    Article  PubMed  CAS  Google Scholar 

  • Gerlach M, Riederer P, Youdim MBH (1996) Molecular mechanisms for neurodegeneration. Synergism between reactive oxygen species, calcium, and excitotoxic amino acids. Adv Neurol 69: 177–194

    PubMed  CAS  Google Scholar 

  • Giovanni A, Liang LP, Hastings TG, Zigmond MJ (1995) Estimating hydroxyl radical content in rat brain using systematic and intraventricular salicylate: impact of methamphetamine. J Neurochem 64: 1819–1825

    Article  PubMed  CAS  Google Scholar 

  • Götz ME, Kunig G, Riederer P, Youdim MBH (1994) Oxidative stress: free radical production in neural degeneration. Pharmacol Ther 63: 37–122

    Article  PubMed  Google Scholar 

  • Greene LA, Aletta JM, Rukenstein A, Green SH (1987) PC12 pheochromocytoma cells: culture, nerve growth factor treatment, and experimental exploitation. Methods Enzymol 147: 207–216

    Article  PubMed  CAS  Google Scholar 

  • Haenen GR, Paquay JB, Korthouwer RE, Bast A (1997) Peroxynitrite scavenging by flavonoids. Biochem Biophys Res Commun 236: 591–593

    Article  PubMed  CAS  Google Scholar 

  • Hall ED (1997) Antioxidant Therapeutic Strategies in CNS Disorders. In: Connor JR (ed) Metals and oxidative damage in neurological disorders. Plenum Press, New York, pp 325–339

    Google Scholar 

  • Hall ED, McCall JM (1993) Lazaroids: potent inhibitors of iron-dependent lipid peroxidation for neurodegenerative disorders. In: Riederer P, Youdim MBH (eds) Iron in central nervous system disorders. Springer, Wien New York, pp 173–188

    Chapter  Google Scholar 

  • Hall ED, Andrus PK, Yonkers PA (1993) Brain hydroxyl radical generation in acute experimental head injury. J Neurochem 60: 588–594

    Article  PubMed  CAS  Google Scholar 

  • Hallenbeck JM (1996) Significance of the inflammatory response in brain ischemia. Acta Neurochir [Suppl] Wien 66: 27–31

    CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1985) Oxygen radicals and the nervous system. Trends Neurosci 8: 22–29

    Article  CAS  Google Scholar 

  • Haramaki N, Stewart DB, Aggarwal S, Kawabata T, Packer L (1995) Role of ascorbate in protection by nitecapone against cardiac ischemia-reperfusion injury. Biochem Pharmacol 50: 839–843

    Article  PubMed  CAS  Google Scholar 

  • Harley A, Cooper JM, Schapira AH (1993) Iron induced oxidative stress and mitochondrial dysfunction: relevance to Parkinson’s disease. Brain Res 627: 349–353

    Article  PubMed  CAS  Google Scholar 

  • Hasinoff BB, Venkataram S, Singh M, Kuschak TI (1994) Metabolism of the cardioprotective agents dexrazoxane (ICRF-187) and levrazoxane (ICRF-186) by the isolated hepatocyte. Xenobiotica 24: 977–987

    Article  PubMed  CAS  Google Scholar 

  • Hastings TG, Lewis DA, Zigmond MJ (1996) Reactive dopamine metabolites and neurotoxicity: implications for Parkinson’s disease. Adv Exp Med Biol 387: 97–106

    PubMed  CAS  Google Scholar 

  • Hensley K, Carney JM, Steward CA, Tabatabaie T, Pye Q, Floyd RA (1997) Nitron-based free radical traps as neuroprotective agents in cerebral ischemia and other pathologies. In: Green AR, Cross AJ (eds) Neuroprotective agents in cerebral ischemia. Academic Press, San Diego, pp 299–317

    Google Scholar 

  • Hershko C (1994) Control of disease by selective iron depletion: a novel therapeutic strategy utilizing iron chelators. Baillieres Clin Haematol 7: 965–1000

    Article  PubMed  CAS  Google Scholar 

  • Hershko C, Link G, Tzahor M, Pinson A (1993) The role of iron and iron chelators in anthracycline cardiotoxicity. Leuk Lymphoma 11: 207–214

    Article  PubMed  CAS  Google Scholar 

  • Hess DC, Thompson Y, Sprinkle A, Carroll J, Smith J (1996) E-selectin expression on human brain microvascular endothelial cells. Neurosci Lett 213: 37–40

    Article  PubMed  CAS  Google Scholar 

  • Hider RC, Choudhury R, Rai BL, Dehkordi LS, Singh S (1996) Design of orally active iron chelators. Acta Haematol 95: 6–12

    Article  PubMed  CAS  Google Scholar 

  • Hoyt KR, Reynolds IJ, Hastings TG (1997) Mechanisms of dopamine-induced cell death in cultured rat forebrain neurons: interactions with and differences from glutamate-induced cell death. Exp Neurol 143: 269–281

    Article  PubMed  CAS  Google Scholar 

  • Hunter MIS, Nlemadim BC, Davidson DLW (1985) Lipid peroxidation production and antioxidant properties in plasma and cerebrospinal fluid of multiple sclerosis patients. Neurochem Res 10: 1645–1652

    Article  PubMed  CAS  Google Scholar 

  • Janzen EG, Blackburn BJ (1968) Detection and identification of short-lived free radicals by an electron spin resonance trappind technique. J Am Chem Soc 90: 5909–5915

    Article  CAS  Google Scholar 

  • Janzen EG, Kotake Y, Hinton RD (1992) Stabilities of hydroxyl radical spin adducts of PBN-type spin traps. Free Radic Biol Med 12: 169–173

    Article  PubMed  CAS  Google Scholar 

  • Jellinger K, Linert L, Kienzl E, Herlinger E, Youdim MBH, Ben-Shachar D, Riederer P (1996) Chemical evidence for 6-hydroxydopamine to be an endogenous toxic factor in the pathogenesis of Parkinson’s disease Iron-melanin interaction and lipid peroxidation: implications for Parkinson’s disease. J Neural Transm [Suppl] 57: 1609–1614

    Google Scholar 

  • Kawabata T, Schepkin V, Haramaki N, Phadke RS, Packer L (1996) Iron coordination by catechol derivative antioxidants. Biochem Pharmacol 51: 1569–1577

    Article  PubMed  CAS  Google Scholar 

  • Knuckey NW, Palm D, Primiano M, Epstein MH, Johanson CE (1995) N-acetylcysteine enhances hippocampal neuronal survival after transient forebrain ischemia in rats. Stroke 26: 305–310

    Article  PubMed  CAS  Google Scholar 

  • Leenders KL, Antonini A, Schwarzbach R, Smith-Jones P, Reist H, Ben-Shachar D, Youdim MBH, Henn V (1994) Blood to brain iron uptake in one rhesus monkey using [Fe-52]-citrate and positron emission tomography (PET): influence of haloperidol. J Neural Transm [Suppl] 43: 123–132

    CAS  Google Scholar 

  • Lees AJ (1993) Dopamine agonists in Parkinson’s disease: a look at apomorphine. Fundam Clin Pharmacol 7: 121–128

    Article  PubMed  CAS  Google Scholar 

  • Liehr JG (1997a) Dual role of oestrogens as hormones and pro-carcinogens: tumour initiation by metabolic activation of oestrogens. Eur J Cancer Prev 6: 3–10

    Article  PubMed  CAS  Google Scholar 

  • Liehr JG (1997b) Hormone-associated cancer: mechanistic similarities between human breast cancer and estrogen-induced kidney carcinogenesis in hamsters. Environ Health Perspect 105 [Suppl] 3: 565–569

    Google Scholar 

  • Liu J, Mori A (1993) Monoamine metabolism provides an antioxidant defense in the brain against oxidant-and free radical-induced damage. Arch Biochem Biophys 302: 118–127

    Article  PubMed  CAS  Google Scholar 

  • Marx JJ, van Asbeck BS (1996) Use of iron chelators in preventing hydroxyl radical damage: adult respiratory distress syndrome as an experimental model for the pathophysiology and treatment of oxygen-radical-mediated tissue damage. Acta Haematol 95: 49–62

    Article  PubMed  CAS  Google Scholar 

  • McCay PB (1985) Vitamin E: Interactions with free radicals and ascorbate. Ann Rev Nutr 5: 323–340

    Article  CAS  Google Scholar 

  • Miller JW, Selhub J, Joseph JA (1996) Oxidative damage caused by free radicals produced during catecholamine autoxidation: protective effects of O-methylation and melatonin. Free Radic Biol Med 21: 241–249

    Article  PubMed  CAS  Google Scholar 

  • Minotti G, Aust SD (1992) Redox cycling of iron and lipid peroxidation. Lipids 27: 219–226

    Article  PubMed  CAS  Google Scholar 

  • Morel I, Cillard J, Lescoat G, Sergent O, Pasdeloup N, Ocaktan AZ, Abdallah MA, Brissot P, Cillard P (1992) Antioxidant and free radical scavenging activities of the iron chelators pyoverdin and hydroxypyrid-4-ones in iron-loaded hepatocyte cultures: comparison of their mechanism of protection with that of desferrioxamine. Free Radic Biol Med 13: 499–508

    Article  PubMed  CAS  Google Scholar 

  • Morel I, Lescoat G, Cogrel P, Sergent O, Pasdeloup N, Brissot P, Cillard P, Cillard J (1993) Antioxidant and iron-chelating activities of the flavonoids catechin, quercetin and diosmetin on iron-loaded rat hepatocyte cultures. Biochem Pharmacol 45: 13–19

    Article  PubMed  CAS  Google Scholar 

  • Oliver CN, Starke-Reed PE, Stadtman ER, Liu GJ, Carney JM, Floyd RA (1990) Oxidative damage to brain proteins, loss of glutamine synthetase activity, and production of free radicals during ischemia/reperfusion-induced injury to gerbil brain. Proc Natl Acad Sci U S A 87: 5144–5147

    Article  PubMed  CAS  Google Scholar 

  • Olivieri NF (1996) Long-term therapy with deferiprone. Acta Haematol 95: 37–48

    Article  PubMed  CAS  Google Scholar 

  • Packer L, Tritschler HJ, Wessel K (1997) Neuroprotection by the metabolic antioxidant α-lipoic acid. Free Radic Biol Med 22: 359–378

    Article  PubMed  CAS  Google Scholar 

  • Panigrahi M, Sadguna Y, Shivakumar BR, Kolluri SV, Roy S, Packer L, Ravindranath V (1996) α-Lipoic acid protects against reperfusion injury following cerebral ischemia in rats. Brain Res 717: 184–188

    Article  PubMed  CAS  Google Scholar 

  • Pentikainen MO, Lindstedt KA, Kovanen PT (1995) Inhibition of the oxidative modification of LDL by nitecapone. Arterioscler Thromb Vasc Biol 15: 740–747

    Article  PubMed  CAS  Google Scholar 

  • Riederer P, Sofic E, Rausch WD, Schmidt D, Reynolds GP, Jellinger K, Youdim MBH (1989) Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J Neurochem 52: 512–520

    Article  Google Scholar 

  • Sam EE, Verbeke N (1995) Free radical scavenging properties of apomorphine enantiomers and dopamine: Possible implication in their mechanism of action in parkinsonism. J Neural Transm PD Sect 10: 115–127

    Article  CAS  Google Scholar 

  • Sgaragli GP, Valoti M, Gorelli B, Fusi F, Palmi M, Mantovani P (1993) Calcium antagonist and antiperoxidant properties of some hindered phenols. Br J Pharmacol 110: 369–377

    Article  PubMed  CAS  Google Scholar 

  • Shinobu LA, Beal MF (1997) The role of oxidative processes and metal ions in aging and Alzheimer’s disease. In: Connor JR (ed) Metals and oxidative damage in neurological disorders. Plenum Press, New York, pp 237–275

    Google Scholar 

  • Smith CD, Carney JM, Starke-Reed PE, Oliver CN, Stadtman ER, Floyd RA, Markesbery WR (1991) Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease. Proc Natl Acad Sci USA 88: 10540–10543

    Article  PubMed  CAS  Google Scholar 

  • Spear N, Aust SD (1995) Effects of glutathione on Fenton reagent-dependent radical production and DNA oxidation. Arch Biochem Biophys 324: 111–116

    Article  PubMed  CAS  Google Scholar 

  • Stadtman ER (1993) Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions. Annu Rev Biochem 62: 797–821

    Article  PubMed  CAS  Google Scholar 

  • Terland O, Flatmark T, Tangeras A, Gronberg M (1997) Dopamine oxidation generates an oxidative stress mediated by dopamine semiquinone and unrelated to reactive oxygen species. J Mol Cell Cardiol 29: 1731–1738

    Article  PubMed  CAS  Google Scholar 

  • Trenam CW, Winyard PG, Morris CJ, Blake DR (1992) Iron promotes oxidative damage in rheumatic diseases. In: Lauffer RB (ed) Iron and human disease. CRC Press, Boca Raton, pp 395–418

    Google Scholar 

  • Vatessery GT (1997) Vitamin E: Neurochemical aspects and relevance to nervous system disorders. In: Connor JR (ed) Metals and oxidative damage in neurological disorders. Plenum Press, New York, pp 175–188

    Google Scholar 

  • Vimard F, Nouvelot A, Duval D (1996) Cytotoxic effects of an oxidative stress on neuronal-like pheochromocytoma cells (PC12). Biochem Pharmacol 51: 1389–1395

    Article  PubMed  CAS  Google Scholar 

  • Wolz P, Krieglstein J (1996) Neuroprotective effects of α-lipoic acid and its enantiomers demonstrated in rodent models of focal cerebral ischemia. Neuropharmacology 35: 369–375

    Article  PubMed  CAS  Google Scholar 

  • Xiao G, van der Helm D, Hider RC, Rai BL (1996) Molecular modeling studies of a ferric hexadentate 3-hydroxy-2(lH)-pyridone complex and an analog by molecular mechanics, molecular dynamics, and free energy pertubation simulations. J Phys Chem 100: 2345–2352

    Article  CAS  Google Scholar 

  • Yamasaki Y, Itoyama Y, Kogure K (1996) Involvement of cytokine production in pathogenesis of transient cerebral ischemic damage. Keio J Med 45: 225–229

    Article  PubMed  CAS  Google Scholar 

  • Youdim MBH, Lavie L, Riederer P (1994) Oxygen free radicals and neurodegeneration in Parkinson’s disease: a role for nitric oxide. Ann N Y Acad Sci 738: 64–68

    Article  PubMed  CAS  Google Scholar 

  • Zhao Q, Pahlmark K, Smith ML, Siesjö BK (1994) Delayed treatment with the spin trap a-phenyl-N-tert-butyl nitrone (PBN) reduces infarct size following transient middle cerebral artery occlusion in rats. Acta Physiol Scand 152: 349–350

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Wien

About this paper

Cite this paper

Gassen, M., Youdim, M.B.H. (1999). Free radical scavengers: chemical concepts and clinical relevance. In: Przuntek, H., Müller, T. (eds) Diagnosis and Treatment of Parkinson’s Disease — State of the Art. Journal of Neural Transmission. Supplementa, vol 56. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6360-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6360-3_13

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83275-2

  • Online ISBN: 978-3-7091-6360-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics