Skip to main content

Differentiation of dopamine agonists and their role in the treatment of Parkinson’s disease

  • Conference paper
Diagnosis and Treatment of Parkinson’s Disease — State of the Art

Part of the book series: Journal of Neural Transmission. Supplementa ((NEURAL SUPPL,volume 56))

Summary

Since the pioneering work of Hornykiewicz and his colleagues, it has been recognized that dopaminergic cells die selectively in Parkinson’s disease, and considerable improvement in symptoms can be achieved by administering levodopa, so that it may be converted to dopamine. However, levodopa has side-effects, and its duration of action is relatively brief. For these reasons, alternative approaches have been undertaken to stimulate the dopamine receptors. In particular, artificial agonists for dopamine receptors have been developed. The pioneer compound was bromocriptine, which stimulates the D2 family of receptors. Bromocriptine is an ergot derivative, and other compounds that are structurally related to ergot have been developed. In particular, lisuride and pergolide have been used for several years. Recently, an ergot derivative with an exceptionally long plasma half-life has been studied, cabergoline. Now there are also non-ergot derivatives that are D2 agonists, and are likely to have a role in the treatment of Parkinson’s disease. Both ropinirole and pramipexole fall into this category, and each has been released in various countries for the treatment of Parkinson’s disease. All of these compounds stimulate the D2 family of receptors, but they have varying actions on the D1 family of receptors. At present, there is no definite information on the role of the D1 family of receptors in either the therapeutic response to levodopa, or the development of adverse reactions. However, preliminary studies with a D1 agonist, ABT-431, are now in progress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Calne DB (1993) Treatment of Parkinson’s disease. N Engl J Med 329: 1021–1027

    Article  PubMed  CAS  Google Scholar 

  • Calne DB, Teychenne PF, Claveria LE, Eastman R, Greenacre JK, Petrie A (1974a) Bromocriptine in parkinsonism. Br Med J 4: 442–444

    Article  PubMed  CAS  Google Scholar 

  • Calne DB, Teychenne PF, Leigh PN, Bamji AN, Greenacre JK (1974b) Treatment of parkinsonism with bromocriptine. Lancet 2: 1355–1366

    Article  PubMed  CAS  Google Scholar 

  • Civelli O, Bunzow JR, Grandy DK, Zhou Q-Y, Van Tol HHM (1991) Molecular biology of the dopamine receptors. Eur J Pharmacol 207: 277–286

    Article  PubMed  CAS  Google Scholar 

  • Corrodi H, Fuxe K, Hokfelt T, Lidbrink P, Ungerstedt U (1973) Effect of ergot drugs on central catecholamine neurons: Evidence for a stimulation of central dopamine neurons. J Pharm Pharmacol 25: 409–411

    Article  PubMed  CAS  Google Scholar 

  • Cotzias GC, Van Woert MH, Schiffer LM (1967) Aromatic amino acids and modification of parkinsonism. New Engl J Med 276: 374–379

    Article  PubMed  CAS  Google Scholar 

  • Ehringer H, Hornykiewicz O (1960) Verteilung von Noradrenalin und Dopamin (3-Hydroxytyramin) im Gehirn des Menschen Wien Klin Wochenschr 38: 1236–1239

    Article  CAS  Google Scholar 

  • Fluekiger E (1972) Drugs and the control of prolactin secretion. In: Boyns AR, Griffiths K (eds) Prolactin and carcinogenesis. Alpha Omega Alpha Publishing, Cardiff: 162–171

    Google Scholar 

  • Fluekiger E, Briner U, Kovacs E, et al (1981) Prolactin secretion stimulation by an ergopeptine. Experientia 37: 669

    Google Scholar 

  • Fluekiger E, Briner U, Enz A, Markstein R, Vigouret JM (1983) Dopaminergic compounds: An overview. In: Calne DB, Horowski R, McDonald RJ, Wuttke W (eds) Lisuride and other dopamine agonists. Raven Press, New York: 1–9

    Google Scholar 

  • Frantz AG, Kleinberg DL (1970) Prolactin: Evidence that it is separate from growth hormone in human blood. Science 170: 745–747

    Article  PubMed  CAS  Google Scholar 

  • Fuxe K, Hokfelt T (1970) Central monoaminergic systems and hypothalamic function. In: Martini L, Motta M, Fraschini F (eds) The hypothalamus. 0Academic Press, New York: 123–138

    Google Scholar 

  • Geschwind II (1972) Introduction. In: Boyns AR, Griffiths K (eds) Prolactin and cardiogenesis. Alpha Omega Alpha Publishing, Cardiff: 1–3

    Google Scholar 

  • Grondin R, Bedard PJ, Britton DR, Shiosaki K (1997) Potential therapeutic use of the selective dopamine D1 receptor agonist, A-86929: an acute study in parkinsonian levodopa-primed monkeys. Neurology 49: 421–426

    Article  PubMed  CAS  Google Scholar 

  • Hokfelt T, Fuxe K (1972) On the morphology and the neuroendocrine role of the hypothalamic catecholamine neurons. In: Knigge KM, Scott DE, Weindl A (eds) Brain-endocrine interaction. Median eminence: structure and function. Karger, Basel: 181–223

    Google Scholar 

  • Hwang P, Friesen H, Hardy J, Wilansky D (1971a) Biosynthesis of human growth hormone and prolactin by normal pituitary glands and pituitary adenomas. J Clin Endocrinol 33: 1–7

    Article  CAS  Google Scholar 

  • Hwang P, Guyda H, Friesen HG (1971b) A radioimmunoassay for human prolactin. Proc Natl Acad Sci USA 68: 1902–1906

    Article  PubMed  CAS  Google Scholar 

  • Johnson AM, Vigouret JM, Loew DM (1973) Central dopaminergic actions of ergotoxine alkaloids and some derivatives. Experientia 29: 763

    Google Scholar 

  • Kebabian JW, Calne DB (1979) Multiple receptor mechanisms for dopamine. Nature 227: 93–96

    Article  Google Scholar 

  • Kebabian JW, Greengard P (1991) Dopamine-sensitive adenyl cyclase: possible role in synaptic transmission. Science 174: 1346–1349

    Article  Google Scholar 

  • Lewis UJ, Singh RNP, Sinha YN, VahderLaan WP (1971) Electrophoretic evidence for human prolactin. J Clin Endocrinol 33: 153–156

    Article  CAS  Google Scholar 

  • Loewenstein JE, Mariz IK, Peake GT, Daughaday WH (1971) Prolactin bioassay by induction of N-acetyllactosamine synthetase in mouse mammary explants. J Clin Endocrinol 33: 217–224

    Article  CAS  Google Scholar 

  • Lutterbeck PM, Pryor S, Varga L, Wenner R (1971) Treatment of non-puerperal galactorrhea with an ergot alkaloid. Br Med J 3: 228–229

    Article  PubMed  CAS  Google Scholar 

  • Pasteeis JL (1972) Tissue culture of human hypophyses: evidence of a specific prolactin in man. In: Wolstenholme GEW, Knight J (eds) Lactogenic hormones. Churchill Livingstone, Edinburgh: 269–277

    Google Scholar 

  • Pasteels JL (1973) Introduction. In: Pasteels JL, Robyn C (eds) Human prolactin. Excerpta Medica, Amsterdam: xi–xiii

    Google Scholar 

  • Pasteels JL, Danguy A, Frerotte M, Ectors F (1971) Inhibition de la secretion de prolactine par l’ergocornine et la 2-Br-alpha-ergokryptine: action directe sur l’hypophyse en culture. Ann Endocrinol (Paris) 32: 188–192

    CAS  Google Scholar 

  • Sibley DR, Monsma FJJ (1992) Molecular biology of dopamine receptors. TIPS 131(13): 61–69

    Google Scholar 

  • Strange P (1997) Biochemical characterization of dopamine receptors. In: Neve KA, Neve RL (eds) The dopamine receptors. Humana Press, Totowa, NJ: 3–26

    Chapter  Google Scholar 

  • Turkington RW (1971) Measurement of prolactin activity in human serum by the induction of specific milk proteins in mammary gland in vitro. J Clin Endocrinol 33: 210–216

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Wien

About this paper

Cite this paper

Calne, D.B. (1999). Differentiation of dopamine agonists and their role in the treatment of Parkinson’s disease. In: Przuntek, H., Müller, T. (eds) Diagnosis and Treatment of Parkinson’s Disease — State of the Art. Journal of Neural Transmission. Supplementa, vol 56. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6360-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6360-3_12

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83275-2

  • Online ISBN: 978-3-7091-6360-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics