Skip to main content

The Linear Sampling Method in Inverse Scattering Theory

  • Chapter
Surveys on Solution Methods for Inverse Problems

Abstract

A survey is given of the linear sampling method for solving the inverse scattering problem of determing the support of an inhomogeneous medium from a knowledge of the far field pattern of the scattered field. An application is given to the problem of detecting leukemia in the human body.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Colton, D. and Kirsch, A., A simple method for solving inverse scattering problems in the resonance region, Inverse Problems 12(1966), 383–393.

    Article  MathSciNet  Google Scholar 

  2. Colton, D., Kirsch, A. and Päivärinta, A., Far field patterns for acoustic waves in an inhomogeneous medium, SIAM J. Math. Anal. 20 (1989), 1472–1483.

    Article  MATH  MathSciNet  Google Scholar 

  3. Colton, D. and Kress, R., Eigenvalues of the far field operator for the Helmholtz equation in an absorbing medium, SIAM J. Appl Math. 55 (1995), 1724–1735.

    Article  MATH  MathSciNet  Google Scholar 

  4. Colton, D. and Kress, R., Inverse Acoustic and Electromagnetic Scattering Theory, Second Ed., Springer-Verlag, New York, 1998.

    MATH  Google Scholar 

  5. Colton, D. and Monk, P., A linear sampling method for the detection of leukemia using microwaves, SIAM J. Appl. Math. 58 (1998), 926–941.

    Article  MATH  MathSciNet  Google Scholar 

  6. Colton, D. and Monk, P., Mathematical problems in microwave medical imaging, in Computational Radiology and Imaging: Therapy and Diagnostics, C. Börgers and F. Natterer, eds., Springer-Verlag, New York, 1999, 137–156.

    Chapter  Google Scholar 

  7. Colton, D. and Monk, P., A linear sampling method for the detection of leukemia using microwaves II, submitted for publication.

    Google Scholar 

  8. Colton, D., Piana, M. and Potthast, R., A simple method using Morozov’s discrepancy principle for solving inverse scattering problems, Inverse Problems 13 (1997), 1477–1493.

    Article  MATH  MathSciNet  Google Scholar 

  9. Coyle, J., Direct and Inverse Problems in Electromagnetic Scattering from Anisotropic Objects, Ph.D. Thesis, University of Delaware, Newark, 1998.

    Google Scholar 

  10. Harrington, R. and Mautz, J., An impedance sheet approximation for thin dielectric shells, IEEE Trans. Antennas and Propagation 23 (1975), 531–534.

    Article  MathSciNet  Google Scholar 

  11. Kirsch, A., An Introduction to the Mathematical Theory of Inverse Problems, Springer-Verlag, New York, 1996.

    MATH  Google Scholar 

  12. Kirsch, A., Characterization of the shape of the scattering obstacle by the spectral data of the far field operator, Inverse Problems 14 (1998), 1489–1512.

    Article  MATH  MathSciNet  Google Scholar 

  13. Kirsch, A., Factorization of the far field operator for the inhomogeneous medium case and an application in inverse scattering theory, Inverse Problems, to appear.

    Google Scholar 

  14. Langenberg, K. J., Applied inverse problems for acoustic, electromagnetic and elastic wave scattering, in Basic Methods of Tomography and Inverse Problems, P.C. Sabatier, ed., Adam Hilger, Bristol, 1987, 125–467.

    Google Scholar 

  15. Potthast, R., On a concept of uniqueness in inverse scattering for a finite number of incident waves, SIAM J. Appl. Math. 58 (1998), 666–682.

    Article  MATH  MathSciNet  Google Scholar 

  16. Ringrose, J. R., Compact, Non-Self-Adjoint Operators, Van Nostrand Rein-hold Co., London, 1971.

    MATH  Google Scholar 

  17. Sun, Z. and Uhlmann, G., Recovery of singularities for formally determined inverse problems, Comm. Math. Physics 153 (1993), 431–445.

    Article  MATH  MathSciNet  Google Scholar 

  18. Tikhonov, A. N., Goncharsky, A. V., Stepanov, V. V. and Yagola, A. G., Numerical Methods for the Solution of Ill-Posed Problems, Kluwer, Dordrecht, 1995.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag/Wien

About this chapter

Cite this chapter

Colton, D., Kirsch, A., Monk, P. (2000). The Linear Sampling Method in Inverse Scattering Theory. In: Colton, D., Engl, H.W., Louis, A.K., McLaughlin, J.R., Rundell, W. (eds) Surveys on Solution Methods for Inverse Problems. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6296-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6296-5_6

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83470-1

  • Online ISBN: 978-3-7091-6296-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics