Skip to main content

A Survey of Regularization Methods for First-Kind Volterra Equations

  • Chapter
Surveys on Solution Methods for Inverse Problems

Abstract

We survey continuous and discrete regularization methods for first-kind Volterra problems with continuous kernels. Classical regularization methods tend to destroy the non-anticipatory (or causal) nature of the original Volterra problem because such methods typically rely on computation of the Volterra adjoint operator, an anticipatory operator. In this survey we pay special attention to particular regularization methods, both classical and nontraditional, which tend to retain the Volterra structure of the original problem. Our attention will primarily be focused on linear problems, although extensions of methods to nonlinear and integro-operator Volterra equations are mentioned when known.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

General Theory

  1. Corduneanu, C: Integral equations and applications, Cambridge University Press, Cambridge, 1991.

    MATH  Google Scholar 

  2. Eldén, L.: An algorithm for the regularization of ill-conditioned, banded least squares problems, SIAM J. Sci. Statist. Comput. 5 (1984) no. 1, 237–254.

    MATH  MathSciNet  Google Scholar 

  3. Engl, H. W., Gfrerer, H.: A posteriori parameter choice for general regularization methods for solving linear ill-posed problems, Appl. Numer. Math. 4 (1988) no. 5, 395–417.

    MATH  MathSciNet  Google Scholar 

  4. Engl, H. W., Hanke, M., Neubauer, A.: Regularization of inverse problems, Kluwer Academic Publishers Group, Dordrecht, 1996.

    MATH  Google Scholar 

  5. Faber, V., Manteuffel, T. A., White, Jr., A. B., Wing, G. M.: Asymptotic behavior of singular values and singular functions of certain convolution operators, Comput. Math. Appl. Ser. A 12 (1986) no. 6, 733–747.

    MATH  MathSciNet  Google Scholar 

  6. Faber, V., Wing, G. M.: Asymptotic behavior of singular values of convolution operators, Rocky Mountain J. Math. 16 (1986) no. 3, 567–574.

    MATH  MathSciNet  Google Scholar 

  7. Gripenberg, G., Londen, S.-O., Staffans, 0.: Volterra integral and functional equations, Cambridge University Press, Cambridge-New York, 1990.

    MATH  Google Scholar 

  8. Groetsch, C. W.: The theory of Tikhonov regularization for Fredholm equations of the first kind, Pitman (Advanced Publishing Program), Boston-London, 1984.

    MATH  Google Scholar 

  9. Lavrent’ev, M. M. Savel’ev, L. Ya.: Linear operators and ill-posed problems, Consultants Bureau, New York, 1995.

    Google Scholar 

  10. Natterer, F.: Regularisierung schlecht gestellter Probleme durch Projektionsver-fahren, Numer. Math. 28 (1977) no. 3, 329–341.

    MATH  MathSciNet  Google Scholar 

  11. Natterer, F.: The mathematics of computerized tomography, B. G. Teubner, Stuttgart, 1986.

    MATH  Google Scholar 

  12. Nohel, J. A., Shea, D. F.: Frequency domain methods for Volterra equations, Advances in Math. 22 (1976) no. 3, 278–304.

    MATH  MathSciNet  Google Scholar 

  13. Raus, T.: Residue principle for ill-posed problems. Acta et comment. Univers. Tartuensis 672 (1984) 16–26.

    MathSciNet  Google Scholar 

  14. Schmaedeke, W. W.: Approximate solutions for Volterra integral equations of the first kind, J. Math. Anal. Appl. 23 (1968) 604–613.

    MATH  MathSciNet  Google Scholar 

The Inverse Heat Conduction Problem

  1. Alifanov, O. M., Artyukhin, E. A., Rumyantsev, S. V: Extreme methods for solving ill-posed problems with applications to inverse heat transfer problems, Begell House, Inc., New York, 1995.

    MATH  Google Scholar 

  2. Beck, J. V., Blackwell, B., St. Clair, Jr., C. R.: Inverse heat conduction, Wiley-Interscience, 1985.

    Google Scholar 

  3. Eldén, L.: Numerical solution of the sideways heat equation, Inverse problems in diffusion processes (Lake St. Wolfgang, 1994) SIAM, Philadelphia, PA, 1995, pp. 130–150.

    Google Scholar 

  4. Eldén, L.: Numerical solution of the sideways heat equation by difference approximation in time, Inverse Problems 11 (1995) no. 4, 913–923.

    MATH  MathSciNet  Google Scholar 

  5. Engl, H. W., Rundell, W. (eds.): Inverse problems in diffusion processes, Society for Industrial and Applied Mathematics (SIAM) Philadelphia, PA, 1995.

    Google Scholar 

  6. Frankel, J. I.: Residual-minimization least-squares method for inverse heat conduction, Comput. Math. Appl. 32 (1996) no. 4, 117–130.

    MATH  MathSciNet  Google Scholar 

  7. Hào, D. N., Reinhardt, H.-J.: On a sideways parabolic equation, Inverse Problems 13 (1997) no. 2, 297–309.

    MATH  MathSciNet  Google Scholar 

  8. Hào, D. N., Reinhardt, H.-J.: Recent contributions to linear inverse heat conduction problems, J. Inverse Ill-Posed Probl. 4 (1996) no. 1, 23–32.

    MATH  MathSciNet  Google Scholar 

  9. Janno, J., Wolfersdorf, L. V.: Identification of memory kernels in general linear heat flow, J. Inverse Ill-Posed Probl. 6 (1998) 141–164.

    MATH  MathSciNet  Google Scholar 

  10. Janno, J., Wolfersdorf, L. V.: Inverse problems for identification of memory kernels in heat flow, J. Inverse Ill-Posed Probl. 4 (1996) 39–66.

    MATH  MathSciNet  Google Scholar 

  11. Kurpisz, K., Nowak, A. J.: Inverse thermal problems, Computational Mechanics Publications, Southampton, 1995.

    MATH  Google Scholar 

  12. Liu, J.: A stability analysis on Beck’s procedure for inverse heat conduction problems, J. Comput. Phys. 123 (1996) no. 1, 65–73.

    MATH  MathSciNet  Google Scholar 

  13. Liu, J., Guerrier, B., Bénard, C: A sensitivity decomposition for the regularized solution of inverse heat conduction problems by wavelets, Inverse Problems 11 (1995) no. 6, 1177–1187.

    MATH  MathSciNet  Google Scholar 

  14. Mejía, C. E., Murio, D. A.: Numerical solution of generalized IHCP by discrete mollification, Comput. Math. Appl. 32 (1996) no. 2, 33–50.

    MATH  MathSciNet  Google Scholar 

  15. Murio, D. A., Liu, Y., Zheng, H.: Numerical experiments in multidimensional IHCP on bounded domains, Inverse Problems in Diffusion Processes (Lake St. Wolfgang, 1994) SIAM, Philadelphia, PA, 1995, pp. 151–180.

    Google Scholar 

  16. Murio, D. A., Zheng, H. C: A stable algorithm for 3D-IHCP, Comput. Math. Appl. 29 (1995) no. 5, 97–110.

    MATH  MathSciNet  Google Scholar 

  17. Regińska, T.: Sideways heat equation and wavelets, J. Comput. Appl. Math. 63 (1995) no. 1–3, 209–214, International Symposium on Mathematical Modelling and Computational Methods Modelling 94 (Prague, 1994).

    MATH  MathSciNet  Google Scholar 

  18. Regińska, T., Eldén, L.: Solving the sideways heat equation by a wavelet-Galerkin method, Inverse Problems 13 (1997) no. 4, 1093–1106.

    MATH  MathSciNet  Google Scholar 

  19. Tautenhahn, U.: Optimal stable approximations for the sideways heat equation, J. Inverse Ill-Posed Probl. 5 (1997) no. 3, 287–307.

    MATH  MathSciNet  Google Scholar 

  20. Wolfersdorf, L. V.: Inverse problems for memory kernels in heat flow and viscoelasticity, J. Inverse Ill-Posed Probl. 4 (1996) 341–354.

    MATH  MathSciNet  Google Scholar 

  21. Zhan, S., Murio, D. A.: Identification of parameters in one-dimensional IHCP, Comput. Math. Appl. 35 (1998) no. 3, 1–16.

    MathSciNet  Google Scholar 

  22. Zheng, H., Murio, D. A.: 3D-IHCP on a finite cube, Comput. Math. Appl. 31 (1996) no. 1, 1–14.

    MATH  MathSciNet  Google Scholar 

Singular Perturbation Theory and Regularization Methods

  1. Angell, J. S., Olmstead, W. E.: Singularly perturbed Volterra integral equations, SIAM J. Appl. Math. 47 (1987) no. 1, 1–14.

    MATH  MathSciNet  Google Scholar 

  2. Angell, J. S., Olmstead, W. E.: Singularly perturbed Volterra integral equations. II, SIAM J. Appl. Math. 47 (1987) no. 6, 1150–1162.

    MATH  MathSciNet  Google Scholar 

  3. Asanov, A.: A class of systems of Volterra integral equations of the first kind, Funktsional. Anal, i Prilozhen. 17 (1983) no. 4, 73–74, English transl.: Functional Analysis and its Applications 17 (1983) 303–4.

    MATH  MathSciNet  Google Scholar 

  4. Baev, A. V.: Solution of an inverse problem for the wave equation using a regularizing algorithm, Zh. Vychisl. Mat. i Mat. Fiz. 25 (1985) 140–146, 160, English transl.: USSR Comput. Math. Math. Phys. 25 (1985) no. 1, 93–97.

    MathSciNet  Google Scholar 

  5. Denisov, A.M.: The approximate solution of a Volterra equation of the first kind, Ž. Vyčisl. Mat. i Mat. Fiz. 15 (1975) no. 4, 1053–1056, 1091, English transl.: USSR Comput. Math. Math. Phys. 15 (1975) 237–239.

    MATH  MathSciNet  Google Scholar 

  6. Denisov, A. M., Korovin, S. V.: A Volterra-type integral equation of the first kind, Vestnik Moskov. Univ. Ser. XV Vychisl. Mat. Kibernet. 1992 (1992) 22–28, 64, English transl.: Moscow Univ. Comp. Math. Cybernetics (1992) 19–24.

    MathSciNet  Google Scholar 

  7. Denisov, A. M., Lorenzi, A.: On a special Volterra integral equation of the first kind, Boll. Un. Mat. Ital. B (7) 9 (1995) 443–457.

    MathSciNet  Google Scholar 

  8. Imanaliev, M. I., Asanov, A.: Solutions of systems of nonlinear Volterra integral equations of the first kind, Dokl. Akad. Nauk SSSR 309 (1989) no. 5, 1052–1055, English transl.: Soviet Math. Dokl. 40 (1990) 610–613.

    Google Scholar 

  9. Imanaliev, M. I., Khvedelidze, B. V., Gegeliya, T. G., Babaev, A. A., Botashev, A. I.: Integral equations, Differentsial’nye Uravneniya 18 (1982) no. 12, 2050–2069, 2206, English transl.: Differential Equations 18 (1982) 1442–1458.

    MathSciNet  Google Scholar 

  10. Imomnazarov, B.: Approximate solution of integro-operator equations of Volterra type of the first kind, Zh. Vychisl. Mat. i Mat. Fiz. 25 (1985) no. 2, 302–306, 319, English transl.: USSR Comput, Math. Math. Phys. 25 (1985) 199–202.

    MATH  MathSciNet  Google Scholar 

  11. Imomnazarov, B.: Regularization of dissipative operator equations of the first kind, Zh. Vychisl. Mat. i Mat. Fiz. 22 (1982) no. 4, 791–800, 1019, English transl.: USSR Comput. Math. Math. Phys. 22 (1982) 22–32.

    MATH  MathSciNet  Google Scholar 

  12. Janno, J., Wolfersdorf, L. V.: Regularization of a class of nonlinear Volterra equations of a convolution type, J. Inverse Ill-Posed Probl. 3 (1995) 249–257.

    MATH  MathSciNet  Google Scholar 

  13. Kauthen, J.-P.: A survey of singularly perturbed Volterra equations, Appl. Numer. Math. 24 (1997) no. 2–3, 95–114, Volterra centennial (Tempe, AZ, 1996).

    MATH  MathSciNet  Google Scholar 

  14. Lavrent’ev, M. M.: Numerical solution of conditionally properly posed problems, Numerical solution of partial differential equations, II (SYNSPADE, 1970) (Proc. Sympos., Univ. Maryland, College Park, Md., 1970) Academic Press, New York, 1971, pp. 417–432.

    Google Scholar 

  15. Lavrent’ev, M. M.: O nekotorykh nekorrektnykh zadachakh matematicheskoui fiziki, Izdat. Sibirsk. Otdel. Akad. Nauk SSSR, Novosibirsk, 1962, English transl. by Robert J. Sacker: Some improperly posed problems of mathematical physics, Springer-Verlag, Berlin, 1967.

    Google Scholar 

  16. Magnicki, N. A.: The approximate solution of certain Volterra integral equations of the first kind, Vestnik Moskov. Univ. Ser. XV Vycisl. Mat. Kibernet. 1978 (1978) no. 1, 91–96, English transl.: Moscow Univ. Comput. Math. Cybernetics 1978 (1978) no. 1, 74–78.

    Google Scholar 

  17. Sergeev, V. O.: Regularization of Volterra equations of the first kind, Dokl. Akad. Nauk SSSR 197 (1971) 531–534, English transl.: Soviet Math. Dokl. 12 (1971) 501–505.

    MathSciNet  Google Scholar 

Local Regularization and Sequential Predictor-Corrector Methods

  1. Cinzori, A. C, Lamm, P. K.: Future polynomial regularization of ill-posed Volterra equations, submitted, 1998.

    Google Scholar 

  2. Lamm, P. K.: Approximation of ill-posed Volterra problems via predictor-corrector regularization methods, SIAM J. Appl. Math. 56 (1996) no. 2, 524–541.

    MATH  MathSciNet  Google Scholar 

  3. Lamm, P. K.: Future-sequential regularization methods for ill-posed Volterra equations. Applications to the inverse heat conduction problem, J. Math. Anal. Appl. 195 (1995) no. 2, 469–494.

    MATH  MathSciNet  Google Scholar 

  4. Lamm, P. K.: Regularized inversion of finitely smoothing Volterra operators: predictor-corrector regularization methods, Inverse Problems 13 (1997) no. 2, 375–402.

    MATH  MathSciNet  Google Scholar 

  5. Lamm, P. K.: Solution of ill-posed Volterra equations via variable-smoothing Tikhonov regularization, Inverse problems in geophysical applications (Yosemite, CA, 1995) SIAM, Philadelphia, PA, 1997, pp. 92–108.

    Google Scholar 

  6. Lamm, P. K.: Variable-smoothing regularization methods for inverse problems, To appear in Conf. Proceedings of 6th Mediterranean Conference on Control and Systems (Sardinia, 1998).

    Google Scholar 

  7. Lamm, P. K., Elden, L.: Numerical solution of first-kind Volterra equations by sequential Tikhonov regularization, SIAM J. Numer. Anal. 34 (1997) no. 4, 1432–1450.

    MATH  MathSciNet  Google Scholar 

  8. Lamm, P. K., Scofield, T. L.: Local regularization methods for the stabilization of ill-posed Volterra problems, preprint, 1998.

    Google Scholar 

  9. Lamm, P. K., Scofield, T. L.: Sequential predictor-corrector methods for the variable regularization of Volterra inverse problems, preprint, 1998.

    Google Scholar 

Iterative Methods and Lavrent’ev’s m-times Iterated Method

  1. Plato, R.: Iterative and parametric methods for linear ill-posed problems, Habiliationsschrift Fachbereich Mathematik, TU Berlin, 1995.

    Google Scholar 

  2. Plato, R.: Lavrentiev’s method for linear Volterra integral equations of the first kind, with applications to the non-destructive testing of optical-fibre preforms, Inverse Problems in Medical Imaging and Nondestructive Testing (Oberwolfach, 1996) Springer, Vienna, 1997, pp. 196–211.

    Google Scholar 

  3. Plato, R.: On the discrepancy principle for iterative and parametric methods to solve linear ill-posed equations, Numer. Math. 75 (1996) no. 1, 99–120.

    MATH  MathSciNet  Google Scholar 

  4. Plato, R.: Resolvent estimates for Abel integral operators and the regularization of associated first kind integral equations, J. Integral Equations Appl. 9 (1997) no. 3, 253–278.

    MATH  MathSciNet  Google Scholar 

  5. Plato, R.: The Galerkin scheme for Lavrentiev’s m-times iterated method to solve linear accretive Volterra integral equations of the first kind, BIT 37 (1997) no. 2, 404–423.

    MATH  MathSciNet  Google Scholar 

  6. Plato, R.: The Lavrentiev-regularized Galerkin method for linear accretive ill-posed problems, Matimyas Matematika (Journal of the Mathematical Society of the Philippines) Special Issue, August 1998, International Conf. Inverse Problems and Applications, Proc. Manila 1998, pp. 57–66.

    Google Scholar 

  7. Plato, R., Hämarik, U.: On pseudo-optimal parameter choices and stopping rules for regularization methods in Banach spaces, Numer. Funct. Anal. Optim. 17 (1996) no. 1–2, 181–195.

    MATH  MathSciNet  Google Scholar 

  8. Vasin, V. V.: Monotone iterative processes for nonlinear operator equations and their applications to Volterra equations, J. Inverse Ill-Posed Probl. 4 (1996) no. 4, 331–340.

    MATH  MathSciNet  Google Scholar 

  9. Vasin, V. V.: Monotone iterative processes for operator equations in partially ordered spaces, Dokl. Akad. Nauk 349 (1996) no. 1, 7–9.

    MathSciNet  Google Scholar 

Differentiation and Mollification Methods

  1. Hào, D. N.: A mollification method for ill-posed problems, Numer. Math. 68 (1994) no. 4, 469–506.

    MATH  MathSciNet  Google Scholar 

  2. Hegland, M., Anderssen, R. S.: A mollification framework for improperly posed problems, Numer. Math. 78 (1998) no. 4, 549–575.

    MATH  MathSciNet  Google Scholar 

  3. Kabanikhin, S. I.: Numerical analysis of inverse problems, J. Inverse Ill-Posed Probl. 3 (1995) no. 4, 278–304.

    MATH  MathSciNet  Google Scholar 

  4. Louis, A. K.: A unified approach to regularization methods for linear ill-posed problems, Inverse Problems, to appear, May 1998.

    Google Scholar 

  5. Louis, A. K.: Application of the approximate inverse to 3D X-ray CT and ultrasound tomography, Inverse Problems in Medical Imaging and Nondestructive Testing (Oberwolfach, 1996) Springer, Vienna, 1997, pp. 120–133.

    Google Scholar 

  6. Louis, A. K.: Approximate inverse for linear and some nonlinear problems, Inverse Problems 12 (1996) no. 2, 175–190.

    MATH  MathSciNet  Google Scholar 

  7. Louis, A. K.: Constructing an approximate inverse for linear and some nonlinear problems in engineering, Inverse problems in engineering, ASME, New York, 1998, pp. 367–374.

    Google Scholar 

  8. Louis, A. K., Maaβ, P.: A mollifier method for linear operator equations of the first kind, Inverse Problems 6 (1990) no. 3, 427–440.

    MATH  MathSciNet  Google Scholar 

  9. Magnicki, N. A.: A method of regularizing Volterra equations of the first kind, Ž. Vyčisl. Mat. i Mat. Fiz. 15 (1975) no. 5, 1317–1323, 1363, English transl: USSR Comput. Math. Math. Phys. 15 (1975) 221–228.

    Google Scholar 

  10. Murio, D. A.: The mollification method and the numerical solution of ill-posed problems, John Wiley & Sons, Inc., New York, 1993.

    Google Scholar 

  11. Srazhidinov, A.: Regularization of Volterra integral equations of the first kind, Differentsial’nye Uravneniya 26 (1990) no. 3, 521–530, 551, English transl: Differential Equations 26 (1990) 390–398.

    MathSciNet  Google Scholar 

Numerical Methods for First-Kind Volterra Problems

  1. Andrade, C, Franco, N. B., McKee, S.: Convergence of linear multistep methods for Volterra first kind equations with k(t, t) = 0, Computing 27 (1981) no. 3, 189–204.

    MATH  MathSciNet  Google Scholar 

  2. Baker, C. T. H.: Methods for Volterra equations of first kind, Numerical solution of integral equations (Liverpool-Manchester Summer School, 1973) Clarendon Press, Oxford, 1974, pp. 162–174.

    Google Scholar 

  3. Brunner, H.: 1896–1996: One hundred years of Volterra integral equations of the first kind, Appl. Numer. Math. 24 (1997) no. 2–3, 83–93, Volterra centennial (Tempe, AZ, 1996).

    MathSciNet  Google Scholar 

  4. Brunner, H.: Discretization of Volterra integral equations of the first kind, Math. Comp. 31 (1977) no. 139, 708–716.

    MATH  MathSciNet  Google Scholar 

  5. Brunner, H.: Discretization of Volterra integral equations of the first kind. II, Numer. Math. 30 (1978) no. 2, 117–136.

    MATH  MathSciNet  Google Scholar 

  6. Brunner, H.: On the discretization of Volterra integral equations, Nieuw Arch. Wisk. (4) 2 (1984) no. 2, 189–217.

    MathSciNet  Google Scholar 

  7. Brunner, H.: Open problems in the discretization of Volterra integral equations, Numer. Funct. Anal. Optim. 17 (1996) no. 7–8, 717–736.

    MATH  MathSciNet  Google Scholar 

  8. Brunner, H.: Superconvergence of collocation methods for Volterra integral equations of the first kind, Computing 21 (1978/79) no. 2, 151–157.

    MathSciNet  Google Scholar 

  9. Brunner, H., van der Houwen, P. J.: The numerical solution of Volterra equations, North-Holland Publishing Co., Amsterdam-New York, 1986.

    MATH  Google Scholar 

  10. de Hoog, F., Weiss, R.: High order methods for Volterra integral equations of the first kind, SIAM J. Numer. Anal. 10 (1973) 647–664.

    MATH  MathSciNet  Google Scholar 

  11. de Hoog, F., Weiss, R.: On the solution of Volterra integral equations of the first kind, Numer. Math. 21 (1973) 22–32.

    MATH  MathSciNet  Google Scholar 

  12. Dixon, J., McKee, S.: A unified approach to convergence analysis of discretization methods for Volterra-type equations, IMA J. Numer. Anal. 5 (1985) no. 1, 41–57.

    MATH  MathSciNet  Google Scholar 

  13. Dixon, J., McKee, S., Jeltsch, R.:Convergence analysis of discretization methods for nonlinear first kind Volterra integral equations, Numer. Math. 49 (1986) no. 1, 67–80.

    MATH  MathSciNet  Google Scholar 

  14. Eggermont, P. P. B.: Approximation properties of quadrature methods for Volterra integral equations of the first kind, Math. Comp. 43 (1984) no. 168, 455–471.

    MATH  MathSciNet  Google Scholar 

  15. Eggermont, P. P. B.: Beyond superconvergence of collocation methods for Volterra integral equations of the first kind, Constructive methods for the practical treatment of integral equations (Oberwolfach, 1984) Birkhauser, Basel, 1985, pp. 110–119.

    Google Scholar 

  16. Eggermont, P. P. B.: Collocation for Volterra integral equations of the first kind with iterated kernel, SIAM J. Numer. Anal. 20 (1983) no. 5, 1032–1048.

    MATH  MathSciNet  Google Scholar 

  17. Eggermont, P. P. B.: Improving the accuracy of collocation solutions of Volterra integral equations of the first kind by local interpolation, Numer. Math. 48 (1986) no. 3, 263–279.

    MATH  MathSciNet  Google Scholar 

  18. Gladwin C. J., Jeltsch R.: Stability of quadrature rule methods for first kind Volterra integral equations, Nordisk Tidskr. Informationsbehandling (BIT) 14 (1974) 144–151.

    MATH  MathSciNet  Google Scholar 

  19. Huber, A.: Eine Näherungsmethode zur Auflösung Volterrascher Integralgleichungen, Monatsh. Math. Phys. 47 (1939) 240–246.

    MATH  MathSciNet  Google Scholar 

  20. Hung, H. S.: The numerical solution of differential and integral equations by spline functions, Technical Summary Report 1053, Mathematics Research Center, University of Wisconsin, 1970.

    Google Scholar 

  21. Jones, J. G.: On the numerical solution of convolution integral equations and systems of such equations, Math. Comp. 15 (1961) 131–142.

    MATH  MathSciNet  Google Scholar 

  22. Kauthen, J.-P., Brunner, H.: Continuous collocation approximations to solutions of first kind Volterra equations, Math. Comp. 66 (1997) no. 220, 1441–1459.

    MATH  MathSciNet  Google Scholar 

  23. Kobayasi, M.: On numerical solution of the Volterra integral equations of the first kind by trapezoidal rule, Rep. Statist. Appl. Res. Un. Japan. Sci. Engrs. 14 (1967) no. 2, 1–14.

    MathSciNet  Google Scholar 

  24. Linz, P.: A survey of methods for the solution of Volterra integral equations of the first kind, Application and numerical solution of integral equations (Proc. Sem., Australian Nat. Univ., Canberra, 1978) Nijhoff, The Hague, 1980, pp. 183–194.

    Google Scholar 

  25. Linz, P.: Analytical and numerical methods for Volterra equations, Society for Industrial and Applied Mathematics (SIAM) Philadelphia, Pa., 1985.

    MATH  Google Scholar 

  26. Linz, P.: Numerical methods for Volterra integral equations of the first kind., Comput. J. 12 (1969) 393–397.

    MATH  MathSciNet  Google Scholar 

  27. Linz, P.: Numerical methods of Volterra integral equations with applications to certain boundary value problems, Ph.D. thesis, University of Wisconsin, Madison, 1968.

    Google Scholar 

  28. Linz, P.: Product integration methods for Volterra integral equations of the first kind, Nordisk Tidskr. Informationsbehandling (BIT) 11 (1971) 413–421.

    MATH  MathSciNet  Google Scholar 

  29. Linz, P.: The numerical solution of Volterra integral equations by finite difference methods, Technical Summary Report 825, Mathematics Research Center, University of Wisconsin, 1967.

    Google Scholar 

  30. Linz, P.: The solution of Volterra equations of the first kind in the presence of large uncertainties, Treatment of integral equations by numerical methods (Durham, 1982) Academic Press, London, 1982, pp. 123–130.

    Google Scholar 

  31. McAlevey, L. G.: Product integration rules for Volterra integral equations of the first kind, BIT 27 (1987) no. 2, 235–247.

    MATH  MathSciNet  Google Scholar 

  32. McKee, S.: A review of linear multistep methods and product integration methods and their convergence analysis for first kind Volterra integral equations, Treatment of integral equations by numerical methods (Durham, 1982) Academic Press, London, 1982, pp. 153–161.

    Google Scholar 

  33. McKee, S.: Best convergence rates of linear multistep methods for Volterra first kind equations, Computing 21 (1978/79) no. 4, 343–358.

    MathSciNet  Google Scholar 

  34. Richter, G. R.: Numerical solution of integral equations of the first kind with nonsmooth kernels, SIAM J. Numer. Anal. 15 (1978) no. 3, 511–522.

    MATH  MathSciNet  Google Scholar 

  35. Scott, J. A.: A unified analysis of discretization methods for Volterra-type equations, Constructive methods for the practical treatment of integral equations (Oberwolfach, 1984) Birkhauser, Basel, 1985, pp. 244–255.

    Google Scholar 

  36. Scott, J. A., McKee, S.: On the exact order of convergence of discrete methods for Volterra-type equations, IMA J. Numer. Anal. 8 (1988) no. 4, 511–515.

    MATH  MathSciNet  Google Scholar 

  37. Taylor, P. J.: The solution of Volterra integral equations of the first kind using inverted differentiation formulae, Nordisk Tidskr. Informationsbehandling (BIT) 16 (1976) no. 4, 416–425.

    MATH  MathSciNet  Google Scholar 

  38. van der Houwen, P. J., te Riele, H. J. J.: Linear multistep methods for Volterra integral and integro-differential equations, Math. Comp. 45 (1985) no. 172, 439–461.

    MATH  MathSciNet  Google Scholar 

  39. Weiss, R., Anderssen, R. S.: A product integration method for a class of singular first kind Volterra equations, Numer. Math. 18 (1971/72) 442–456.

    MathSciNet  Google Scholar 

  40. Wolkenfelt, P. H. M.: Modified multilag methods for Volterra functional equations, Math. Comp. 40 (1983) no. 161, 301–316.

    MATH  MathSciNet  Google Scholar 

  41. Wolkenfelt, P. H. M.: Reducible quadrature methods for Volterra integral equations of the first kind, BIT 21 (1981) no. 2, 232–241.

    MATH  MathSciNet  Google Scholar 

  42. Young, A.: The application of approximate product integration to the numerical solution of integral equations, Proc. Roy. Soc. London Ser. A. 224 (1954) 561–573.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag/Wien

About this chapter

Cite this chapter

Lamm, P.K. (2000). A Survey of Regularization Methods for First-Kind Volterra Equations. In: Colton, D., Engl, H.W., Louis, A.K., McLaughlin, J.R., Rundell, W. (eds) Surveys on Solution Methods for Inverse Problems. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6296-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6296-5_4

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83470-1

  • Online ISBN: 978-3-7091-6296-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics