Skip to main content

Abstract

We consider a two dimensional membrane. The goal is to find properties of the membrane or properties of a force on the membrane. The data is natural frequencies or mode shape measurements. As a result, the functional relationship between the data and the solution of our inverse problem is both indirect and nonlinear. In this paper we describe three distinct approaches to this problem. In the first approach the data is mode shape level sets and frequencies. Here formulas for approximate solutions are given based on perturbation results. In the second approach the data is frequencies and boundary mode shape measurements; uniqueness results are obtained using the boundary control method. In the third approach the data is frequencies for four boundary value problems. Local existence, uniqueness results are established together with numerical results for approximate solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Alessandrini, “Stable Determination of Conductivity by Boundary Measurements”, Applicable Analysis, Vol. 27, (1988), pp. 153–172.

    Article  MATH  MathSciNet  Google Scholar 

  2. G. Alessandrini and J. Sylvester, “Stability for a Multidimensional Inverse Spectral Theorem”, Comm. Math. Phys., Vol. 5, No. 5, (1990), pp. 711–736.

    MathSciNet  Google Scholar 

  3. M.I. Belishev, “On an approach to Multidimensional Inverse Problems for the wave equation”, Dokl. Akad. Nauk SSSR (in Russian), Vol. 297, No. 3, (1987), pp. 524–527.

    MathSciNet  Google Scholar 

  4. M.I. Belishev, “Boundary control in reconstruction of manifolds and metrics (the BC method),” Inverse Problems, Vol. 13 (1997), No. 5 pp. R1–R45.

    Article  MATH  MathSciNet  Google Scholar 

  5. G. Borg, Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe, Acta Math. Vol. 78, (1946), pp. 1–96.

    MATH  MathSciNet  Google Scholar 

  6. V.M. Babich and V.S. Buldyrev, Short-wavelength Diffraction Theory, Springer Verlag, New York, 1991.

    Google Scholar 

  7. M.J. Belishev and Ya. Kurylev, “To the Reconstruction of a Riemannian Manifold via its Spectral Data (BC-method)”, Comm. P.D.E., Vol. 17, No. 5–6, (1992), pp. 767–804.

    Article  MATH  MathSciNet  Google Scholar 

  8. G. Birkhoff and G-C. Rota, Ordinary Differential Equations, Wiley, New York, 1989.

    Google Scholar 

  9. R. Carlson, “An Inverse Spectral Problem for Sturm-Liouville Operators with Discontinuous Coefficients,” Proc. Amer. Math. Soc., Vol. 120, (1994) pp. 475–484.

    Article  MATH  MathSciNet  Google Scholar 

  10. C.F. Coleman and J.R. McLaughlin, “Solution of the Inverse Spectral Problem for an Impedance with Integrable Derivative, Part I.” Comm. Pure and Appl. Math., Vol. 46 (1993), pp. 145–184.

    Article  MATH  MathSciNet  Google Scholar 

  11. C.F. Coleman and J.R. McLaughlin, “Solution of the Inverse Spectral Problem for an Impedance with Integrable Derivative, Part II.” Comm. Pure and Appl. Math., Vol. 4646 (1993), pp. 185–212.

    Article  MATH  MathSciNet  Google Scholar 

  12. I.M. Gel’fand and B.M. Levitan, “On the Determination of a Differential Equation from its Spectrum,” Ivz. Akad. Nauk SSSR Ser. Math., Vol. 15 (1951), pp. 309–360; Amer. Math. Trans., Vol. 1 (1955), pp. 233–304.

    MATH  MathSciNet  Google Scholar 

  13. O.H. Hald, “The Inverse Sturm-Liouville Problem and the Rayleigh-Ritz Method,” Math. Comp., Vol. 32, No. 143, (1978), pp. 687–705.

    Article  MATH  MathSciNet  Google Scholar 

  14. O. H. Hald, “Inverse Eigenvalue Problems for the mantle,” Geophysical Journal of the Royal Astronomical Society, Vol. 62 (1980), pp. 41–48.

    MATH  Google Scholar 

  15. O. H. Hald, “Inverse eigenvalue problems for the mantel-II,” Geophysical Journal of the Royal Astronomical Society, Vol. 72 (1983), pp. 139–164.

    MATH  Google Scholar 

  16. H. Hochstadt, “The Inverse Sturm Liouville Problem”, CPAM, Vol. XXVI, (1973), pp. 715–729.

    MathSciNet  Google Scholar 

  17. O.H. Hald and J.R. McLaughlin, Inverse Nodal Problems: Finding the Potential from Nodal Lines, AMS Memoir, January 1996.

    Google Scholar 

  18. O.H. Hald and J.R. McLaughlin, “Inverse Problems Using Nodal Position Data — Uniqueness Results, Algorithms and Bounds,” Proceedings of the Centre for Mathematical Analysis, edited by R.S. Anderson and G.N. Newsam, Australian National University, Vol. 17 (1988), pp. 32–59.

    Google Scholar 

  19. O.H. Hald and J.R. McLaughlin, “Solutions of Inverse Nodal Problems,” Inverse Problems, Vol. 5 (1989), pp. 307–347.

    Article  MATH  MathSciNet  Google Scholar 

  20. O.H. Hald and J.R. McLaughlin, “Inverse Problems: Recovery of BV Coefficients from Nodes,” Inverse Problems, Vol. 14 (1998), pp. 245–273.

    Article  MATH  MathSciNet  Google Scholar 

  21. E.L. Isaacson and E. Trubowitz, “The Inverse Sturm-Liouville Problem I,” Comm. Pure and Appl Math, Vol. 36 (1983), pp. 767–783.

    Article  MATH  MathSciNet  Google Scholar 

  22. E.L. Isaacson, H.P. McKean and E. Trubowitz, “The Inverse Sturm-Liouville Problem II,” Comm. Pure and Appl Math. Vol. 36 (1983), pp. 767–783.

    Article  MATH  MathSciNet  Google Scholar 

  23. A. Katchalov and Ya. Kurylev, “Multidimensional Inverse Problem with Incomplete Boundary Spectral Data”, Comm. P.D.E., Vol. 23(1&2), (1998), pp. 55–95.

    MATH  MathSciNet  Google Scholar 

  24. R. Knobel and J.R. McLaughlin, “A Reconstruction Method for a Two-Dimensional Inverse Eigenvalue Problem.” ZAMP, Vol. 45 (1994), pp. 794–826.

    Article  MATH  MathSciNet  Google Scholar 

  25. B. M. Levitan, “On the determination of a Sturm-Liouville equation by two spectra,” Izv. Akad. Nauk, SSSR Ser. Mat. Vol. 28 (1964) pp. 63–78; Amer. Math. Soc. transl. Vol. 68 (1968) pp. 1–20.

    MATH  MathSciNet  Google Scholar 

  26. C. A. Lee, “An inverse nodal problem of a membrane,” Ph. D. thesis, Rensselaer Polytechnic Institute, 1995.

    Google Scholar 

  27. C.J. Lee and J.R. McLaughlin, “Finding the Density for a Membrane from Nodal Lines,” Inverse Problems in Wave Propagation, eds. G. Chavent, G. Papanicolaou, P. Sacks, W.W. Symes, (1997), Springer Verlag, pp. 325–345.

    Google Scholar 

  28. C.K. Law, C-L Shen and C-F Yang, “The Inverse Nodal Problem on the Smoothness of the Potential Function,” Inverse Problems, Vol. 15 (1999), pp. 253–263.

    Article  MATH  MathSciNet  Google Scholar 

  29. C.K. Law and C.F. Yang, “Reconstructing the Potential Function and its Derivative Using Nodal Data,” Inverse Problems, Vol. 14, (1998), pp. 299–312.

    Article  MATH  MathSciNet  Google Scholar 

  30. C.M. McCarthy, “The Inverse Eigenvalue Problem for a Weighted Helm holtz Equations,” (to appear Applicable Analysis).

    Google Scholar 

  31. J.R. McLaughlin, “Inverse Spectral Theory Using Nodal Points as Data — A Uniqueness Result.” J. Diff. Eq., Vol. 73. (1988), pp. 354–362.

    Article  MATH  MathSciNet  Google Scholar 

  32. J.R. McLaughlin, “Good Vibrations,” American Scientist, Vol. 86, No. 4, July-August (1998), pp. 342–349.

    Google Scholar 

  33. J.R. McLaughlin, “Formulas for Finding Coefficients from Nodes/Nodal Lines,” Proceedings of the International Congress of Mathematicians, Zurich, Switzerland 1994, Birkhauser Verlag, (1995), pp. 1494–1501.

    Google Scholar 

  34. J.R. McLaughlin, “Using Level Sets of Mode Shapes to Solve Inverse Problems.” (to appear).

    Google Scholar 

  35. J.R. McLaughlin and A. Portnoy, “Perturbation Expansions for Eigenvalues and Eigenvectors for a Rectangular Membrane Subject to a Restorative Force,” Comm. P.D.E., Vol. 23 (1&2), (1998), pp. 243–285.

    MATH  MathSciNet  Google Scholar 

  36. A. Nachman, J. Sylvester and G. Uhlmann, “An n-Dimensional Borg-Levinson Theorem,” Comm. Math. Phys. Vol. 115, No. 4 (1988), pp. 595–605.

    Article  MATH  MathSciNet  Google Scholar 

  37. J. Pöschel and E. Trubowitz, Inverse Spectral Theory, Academic Press, Orlando, (1987).

    MATH  Google Scholar 

  38. C.L. Shen, “On the Nodal Sets of the Eigenfunctions of the String Equations,” SIAM J. Math. Anal., Vol. 19, (1998), pp. 1419–1424.

    Article  Google Scholar 

  39. C.L. Shen and T.M. Tsai, “On Uniform Approximation of the Density Function of a String Equation Using Eigenvalues and Nodal Points and Some Related Inverse Nodal Problems,” Inverse Problems, Vol. 11, (1995), pp. 1113–1123.

    Article  MATH  MathSciNet  Google Scholar 

  40. C. Vetter Alvarez, “Inverse Nodal Problems with Mixed Boundary Conditions,” Ph. D. thesis, University of California, Berkeley, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag/Wien

About this chapter

Cite this chapter

McLaughlin, J.R. (2000). Solving Inverse Problems with Spectral Data. In: Colton, D., Engl, H.W., Louis, A.K., McLaughlin, J.R., Rundell, W. (eds) Surveys on Solution Methods for Inverse Problems. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6296-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6296-5_10

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83470-1

  • Online ISBN: 978-3-7091-6296-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics