Skip to main content

Huntington disease: new insights on the role of huntingtin cleavage

  • Conference paper
Advances in Research on Neurodegeneration

Summary

Huntington Disease (HD) results from polyglutamine expansion within the N-terminus of huntingtin. We have produced yeast artificial chromosome (YAC) transgenic mice expressing normal (YAC18) and mutant (YAC46 and YAC72) human huntingtin in a developmentally appropriate and tissue-specific manner identical to the pattern of expression of endogenous huntingtin. YAC46 and YAC72 mice show early electrophysiological abnormalities indicating neuronal cytoplasmic dysfunction prior to developing nuclear inclusions or neurodegeneration. YAC72 mice display a hyperkinetic movement disorder by 7 months of age, and have evidence for selective and specific degeneration of medium spiny neurons in the lateral striatum by 12 months of age. A key molecular feature of pathology of these YAC72 mice is cleavage of huntingtin in the cytoplasm following by translocation of the resulting huntingtin N-terminal fragments into the nucleus of striatal neurons. Increasing nuclear localization of huntingtin N-terminal fragments within medium spiny neurons of the striatum occurs concomitantly with the onset of selective neurodegeneration. Because huntingtin is a caspase substrate and truncated huntingtin fragments are toxic in vitro, inhibiting caspase cleavage of hunting tin may be of potential therapeutic benefit in HD. We show that caspase inhibitors eliminate huntingtin cleavage in cells and protects them from an apoptotic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrew S.E., et al (1993) The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington disease. Nature Genet 4: 398–403

    Article  PubMed  CAS  Google Scholar 

  • Becher M.W., et al (1997) Dentatorubral and pallidoluysian atrophy (DRPLA). Clinical and neuropathological findings in genetically confirmed North American and European pedigrees. Mov Disord 12: 519–530

    Article  PubMed  CAS  Google Scholar 

  • Cooper J.K., et al (1998) Truncated N-terminal fragments of huntingtin with expanded glutamine repeats from nuclear and cytoplasmic aggregates in vitro. Hum Mol Genet 7:783–790

    Article  PubMed  CAS  Google Scholar 

  • Davies S.W., et al (1997) Formation of neuronal intranuclear inclusions (NII) underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90: 537–548

    Article  PubMed  CAS  Google Scholar 

  • DiFiglia M, et al (1997) Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277: 1990–1993

    Article  PubMed  CAS  Google Scholar 

  • Duyao M, et al (1993) Trinucleotide repeat length instability and age of onset in Huntington disease. Nature Genet 4: 387–392

    Article  PubMed  CAS  Google Scholar 

  • Ellerby L.M., et al (1999) Kennedy’s disease: caspase cleavege of the androgen receptor is a crucial event in cytotoxicity. J Neurochem 72: 185–195

    Article  PubMed  CAS  Google Scholar 

  • Goldberg Y.P., et al (1996) Cleavage of huntingtin by apopain, a proapoptotic cysteine protease, is modulated by the polyglutamine tract. Nature Genet 13: 442–449

    Article  PubMed  CAS  Google Scholar 

  • Hackam A.S., et al (1998) The influence of huntingtin protein size on nuclear localization and cellular toxicity. J Cell Biol 141: 1097–1105

    Article  PubMed  CAS  Google Scholar 

  • Harper P.S. (1991) Huntington’s disease. WB Saunders, London Philadelphia

    Google Scholar 

  • Hayden M.R. (1981) Huntington’s chorea. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Hodgson J.G., et al (1996) Human huntingtin derived from YAC transgenes compensates for loss of murine huntingtin by rescue of the embryonic lethal phenotype. Hum Mol Genet 5: 1875–1885

    Article  PubMed  CAS  Google Scholar 

  • Hodgson J.G., et al (1999) A YAC mouse model for Huntington’s disease with full-length mutant huntingtin cytoplasmic toxicity and selective striatal neurodegeneration. Neuron 23: 181–192

    Article  PubMed  CAS  Google Scholar 

  • Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72: 971–983

    Article  Google Scholar 

  • Klement I.A., et al (1998) Ataxin-1 nuclear localization and aggregation: role n polyglutamine-induced disease in SCA1 transgenic mice. Cell 95: 41–53

    Article  PubMed  CAS  Google Scholar 

  • Leavitt B.R., Wellington C.L., Hayden M.R. (1999) Recent insights into the pathogenesis of Huntington Disease. Semin Neurol 19: 385–395

    Article  PubMed  CAS  Google Scholar 

  • Lunkes A, Mandel J-L (1998) A cellular model that recapitulates major pathogenetic steps of Huntingtons Disease. Hum Mol Genet 7: 1355–1361

    Article  PubMed  CAS  Google Scholar 

  • Mangiarini L, et al (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87: 493–506

    Article  PubMed  CAS  Google Scholar 

  • Martindale D, et al (1998) Length of the protein and polyglutamine tract influence localization and frequency of intracellular aggregates of huntingtin. Nature Genet 18: 150–154

    Article  PubMed  CAS  Google Scholar 

  • Ona V.O., et al (1999) Inhibition of caspase-1 slows disease progression in a mouse model of Huntington’s disease. Nature 399: 263–267

    Article  PubMed  CAS  Google Scholar 

  • Paulson H.L., et al (1997) Intranuclear inclusions of expanded polyglutamine protein in spinocerebellar ataxia type 3. Neuron 19: 333–344

    Article  PubMed  CAS  Google Scholar 

  • Reddy P.H., et al (1998) Behavioral abnormalities and selective neuronal loss in HD transgenic mice expressing mutated full-length HD cDNA. Nature Genet 20: 198–202

    Article  PubMed  CAS  Google Scholar 

  • Robitaille Y, Lopes-Cendes I, Becher M, Rouleau GA, Clark A.W. (1997) The neuropathology of CAG repeat diseases: review and update of genetic and molecular features. Brain Path 7: 901–926

    Article  CAS  Google Scholar 

  • Sanchez I, et al (1999) Caspase-8 is required for cell death induced by expanded polyglutamine repeats. Neuron 22: 623–633

    Article  PubMed  CAS  Google Scholar 

  • Saudou F, Finkbeiner S, Devys D, Greenberg M.E. (1998) Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 95: 55–66

    Article  PubMed  CAS  Google Scholar 

  • Skinner P.J., et al (1997) Ataxin-1 with an expanded glutamine tract alters nuclear matrixassociated structures. Nature 389: 971–974

    Article  PubMed  CAS  Google Scholar 

  • Vonsattel J.P., et al (1985) Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 44: 559–577

    Article  PubMed  CAS  Google Scholar 

  • Wellington C.L., Hayden MR (1997) Of molecular interactions mice and mechanisms: new insights into Huntington’s disease. Curr Opin Neurol 10: 291–298

    Article  PubMed  CAS  Google Scholar 

  • Wellington C.L., et al (1998) Caspase cleavage of gene products associated with triplet expansion disorders generates truncated fragments containing the polyglutamine tract. J Biol Chem 273: 9158–9167

    Article  PubMed  CAS  Google Scholar 

  • Wellington C.L., et al (2000) Inhibiting caspase cleavage of huntingtin reduces toxicity and aggregate formation in neuronal and nonneuronal cells. J Biol Chem (in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Wien

About this paper

Cite this paper

Wellington, C.L., Leavitt, B.R., Hayden, M.R. (2000). Huntington disease: new insights on the role of huntingtin cleavage. In: Mizuno, Y., Calne, D.B., Horowski, R., Poewe, W., Riederer, P., Youdim, M.B.H. (eds) Advances in Research on Neurodegeneration. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6284-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6284-2_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7246-9

  • Online ISBN: 978-3-7091-6284-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics