Skip to main content

Interaction Between the Haemodynamics of Coronary Flow and Aortic Valve Pathologies

  • Chapter
  • First Online:
Surgical Management of Aortic Pathology

Abstract

Pathological changes in the outflow tract of the left ventricle have a profound effect on coronary haemodynamics. This is evident as the production of myocardial ischaemia with worsening aortic valve disease, clinically represented as the onset of symptoms in advancing states. However, using modern investigative techniques, it is possible to classify the degree of ischaemia through more continuous scales to provide a more detailed quantification of the impact of aortic valve pathology and therefore a detailed insight into the mechanism by which they affect coronary haemodynamics. Aortic stenosis in particular leads to a disruption of normal coronary haemodynamics through two mechanisms. Firstly, there is an increasing force of ventricular contraction that is necessary to expel blood through a progressively increasing outflow tract obstruction. Secondly, the ventricle is inevitably forced to adapt through hypertrophic changes. These two features both have a significant influence on coronary haemodynamics and are the ultimate cause of myocardial ischaemia. Their effects on coronary physiology are complex, interacting and potentially oppositional. Delineating their representative contributions to the pathophysiology of this condition is therefore difficult but essential, initially for understanding the mechanistic processes involved but ultimately for providing bespoke and detailed patient risk stratification. The search for an appropriate tool to quantify the impact of these changes on coronary haemodynamics is long-standing. However, as many techniques are time-consuming or invasive, their employment is often limited, impairing our ability to understand the serial, continuous nature of this disease. Additionally, the complex interaction between left ventricular hypertrophy and outflow tract obstruction makes our recognition of the resultant measure fraught. However, as contemporary investigative approaches emerge that can document the interplay between aorta and myocardium in detail, it may ultimately be possible to separate out the pathophysiological effects of aortic stenosis to provide an accurate quantification of the burden imposed by aortic stenosis with the goal of therapeutic guidance.

To that end this chapter is used to detail the evidence for microvascular dysfunction and coronary haemodynamic disturbance in aortic stenosis. We go on to discuss the potential causes for these abnormalities and highlight those investigative modalities that may prove useful in the future for disease assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lindroos M, Kupari M, Heikkila J, Tilvis R. Prevalence of aortic valve abnormalities in the elderly: an echocardiographic study of a random population sample. J Am Coll Cardiol. 1993;21:1220–5.

    Article  CAS  PubMed  Google Scholar 

  2. Ross J, Braunwald E. Aortic stenosis. Circulation. 1968;38:61.

    Article  PubMed  Google Scholar 

  3. Leon MB, et al. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med. 2010;36:1597–607.

    Article  Google Scholar 

  4. Bonow RO, et al. Focused Update Incorporated Into the ACC/AHA 2006 Guidelines for the Management of Patients with Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee). Circulation. 2008;118:e523–661.

    PubMed  Google Scholar 

  5. Rafique AM, et al. Meta-analysis of prognostic value of stress testing in patients with asymptomatic severe aortic stenosis. Am J Cardiol. 2009;104:972–7.

    Article  PubMed  Google Scholar 

  6. Rajani R, Rimington H, Chambers JB. Treadmill exercise in apparently asymptomatic patients with moderate or severe aortic stenosis: relationship between cardiac index and revealed symptoms. Heart. 2010;96:689–95.

    Article  PubMed  Google Scholar 

  7. Marechaux S, et al. Left ventricular response to exercise in aortic stenosis: an exercise echocardiographic study. Echocardiography. 2007;24:955–9.

    Article  PubMed  Google Scholar 

  8. Rosenhek RM, et al. Natural history of very severe aortic stenosis. Circulation. 2010;121:151–6.

    Article  PubMed  Google Scholar 

  9. Kitai T, et al. Clinical outcomes in non-surgically managed patients with very severe versus severe aortic stenosis. Heart. 2011;97:2029–32.

    Article  PubMed  Google Scholar 

  10. Horstkotte D, Loogen F. The natural history of aortic valve stenosis. Eur Heart J. 1988;9:57–64.

    Article  PubMed  Google Scholar 

  11. Kennedy KD, Nishimura RA, Holmes DR, Bailey KR. Natural history of moderate aortic stenosis. J Am Coll Cardiol. 1991;17:313–9.

    Article  CAS  PubMed  Google Scholar 

  12. Otto CM, et al. Prospective study of asymptomatic valvular aortic stenosis: clinical, echocardiographic, and exercise predictors of outcome. Circulation. 1997;95:2262–70.

    Article  CAS  PubMed  Google Scholar 

  13. Rosenhek R, et al. Mild and moderate aortic stenosis: natural history and risk stratification by echocardiography. Eur Heart J. 2004;25:199–205.

    Article  PubMed  Google Scholar 

  14. Kang DH, et al. Early surgery versus conventional treatment in asymptomatic very severe aortic stenosis. Circulation. 2010;121:1502–9.

    Article  PubMed  Google Scholar 

  15. Vahanian A, et al. Guidelines on the management of valvular heart disease. Eur Heart J. 2007;28:230–68.

    PubMed  Google Scholar 

  16. Fallen EL, Elliott WC, Gorlin RI. Mechanisms of angina in aortic stenosis. Circulation. 1967;36:480–8.

    Article  CAS  PubMed  Google Scholar 

  17. Griggs DM, Chen CC, Tchokoev VV. Subendocardial anaerobic metabolism in experimental aortic stenosis. Am J Phys. 1973;224:607–12.

    Article  CAS  Google Scholar 

  18. Kupari M, et al. Exclusion of coronary artery disease by exercise thallium-201 tomography in patients with aortic valve stenosis. Am J Cardiol. 1992;70:635–40.

    Article  CAS  PubMed  Google Scholar 

  19. Scheler S, Motz W, Strauer BE. Transient myocardial ischaemia in hypertensives: missing link with left ventricular hypertrophy. Eur Heart J. 1992;13:62–5.

    Article  PubMed  Google Scholar 

  20. Julius BK, et al. Angina pectoris in patients with aortic stenosis and normal coronary arteries: mechanisms and pathophysiological concepts. Circulation. 1997;95:89–8.

    Article  Google Scholar 

  21. Marcus ML, Doty DB, Hiratzka LF, Wright CB, Eastham CL. Decreased coronary reserve – a mechanism for angina pectoris in patients with aortic stenosis and normal coronary arteries. N Engl J Med. 1982;307:1362–6.

    Article  CAS  PubMed  Google Scholar 

  22. Hildick-Smith DJ, Shapiro LM. Coronary flow reserve improves after aortic valve replacement for aortic stenosis: an adenosine transthoracic echocardiography study. J Am Coll Cardiol. 2000;36:1889–96.

    Article  CAS  PubMed  Google Scholar 

  23. Kume T, et al. Mechanisms of impaired coronary flow reserve in patients with aortic stenosis: transthoracic Doppler echocardiographic study. J Cardiol. 2004;43:173–8.

    PubMed  Google Scholar 

  24. Eberli FR, et al. Coronary reserve in patients with aortic valve disease before and after successful aortic valve replacement. Eur Heart J. 1991;12:127–38.

    Article  CAS  PubMed  Google Scholar 

  25. Meimoun P, et al. Factors associated with noninvasive coronary flow reserve in severe aortic stenosis. J Am Soc Echocardiogr. 2012;25:835–41.

    Article  PubMed  Google Scholar 

  26. Isaaz K, Bruntz JF, Paris D, Ethevenot G, Aliot E. Abnormal coronary flow velocity pattern in patients with left ventricular hypertrophy, angina pectoris, and normal coronary arteries: a transesophageal Doppler echocardiographic study. Am Heart J. 1994;128:500–10.

    Article  CAS  PubMed  Google Scholar 

  27. Omran H, Fehske W, Rabihieh R. Relationship between symptoms and profile of coronary artery blood flow velocities in patients with aortic valve stenosis: a study using transoesophageal echocardiography. Heart. 2011;75:377–83.

    Article  Google Scholar 

  28. Galiuto L, et al. Impaired coronary and myocardial flow in severe aortic stenosis is associated with increased apoptosis: a transthoracic Doppler and myocardial contrast echocardiography study. Heart. 2006;92:208–12.

    Article  CAS  PubMed  Google Scholar 

  29. Vinten-Johansen J, Weiss HR. Oxygen consumption in subepicardial and subendocardial regions of the canine left ventricle. The effect of experimental acute valvular aortic stenosis. Circ Res. 1980;46:139–45.

    Article  CAS  PubMed  Google Scholar 

  30. Miyagawa S, et al. Coronary microcirculatory dysfunction in aortic stenosis: myocardial contrast echocardiography study. Ann Thorac Surg. 2009;87:715–9.

    Article  PubMed  Google Scholar 

  31. Rajappan K, et al. Assessment of left ventricular mass regression after aortic valve replacement – cardiovascular magnetic resonance versus M-mode echocardiography. Eur J Cardiothorac Surg. 2003;24:59–65.

    Article  PubMed  Google Scholar 

  32. Rajappan K, et al. Mechanisms of coronary microcirculatory dysfunction in patients with aortic stenosis and angiographically normal coronary arteries. Circulation. 2002;105:470–6.

    Article  PubMed  Google Scholar 

  33. Burwash IG, et al. Myocardial blood flow in patients with low-flow, low-gradient aortic stenosis: differences between true and pseudo-severe aortic stenosis. Results from the multicentre TOPAS (Truly or Pseudo-Severe Aortic Stenosis) study. Heart. 2008;94:1627–33.

    Article  CAS  PubMed  Google Scholar 

  34. O’Gorman DJ, Thomas P, Turner MA, Sheridan DJ. Investigation of impaired coronary vasodilator reserve in the Guinea pig heart with pressure induced hypertrophy. Eur Heart J. 1992;13:697–703.

    Article  PubMed  Google Scholar 

  35. Rajappan K, et al. Functional changes in coronary microcirculation after valve replacement in patients with aortic stenosis. Circulation. 2003;107:3170–5.

    Article  PubMed  Google Scholar 

  36. Spaan JA, Breuls NP, Laird JD. Diastolic-systolic coronary flow differences are caused by intramyocardial pump action in the anesthetized dog. Circ Res. 1981;49:584–93.

    Article  CAS  PubMed  Google Scholar 

  37. Davies JE, et al. Arterial pulse wave dynamics after percutaneous aortic valve replacement: fall in coronary diastolic suction with increasing heart rate as a basis for angina symptoms in aortic stenosis. Circulation. 2011;124:1565–72.

    Article  PubMed  Google Scholar 

  38. Sun YH, Anderson TJ, Parker KH, Tyberg JV. Effects of left ventricular contractility and coronary vascular resistance on coronary dynamics. Am J Physiol Heart Circ Physiol. 2004;286:1590–5.

    Article  Google Scholar 

  39. Lockie TP, et al. Synergistic adaptations to exercise in the systemic and coronary circulations that underlie the warm-up angina phenomenon. Circulation. 2012;126:2565–74.

    Article  PubMed  Google Scholar 

  40. Mattace-Raso FU, et al. Arterial stiffness and risk of coronary heart disease and stroke: the Rotterdam study. Circulation. 2006;113:657–63.

    Article  PubMed  Google Scholar 

  41. O’Rourke MF, Staessen JA, Vlachopoulos C, Duprez D, Plante GE. Clinical applications of arterial stiffness; definitions and reference values. Am J Hypertens. 2002;15:426–44.

    Article  PubMed  Google Scholar 

  42. Briand M, et al. Reduced systemic arterial compliance impacts significantly on left ventricular afterload and function in aortic stenosis: implications for diagnosis and treatment. J Am Coll Cardiol. 2005;46:291–8.

    Article  PubMed  Google Scholar 

  43. Sunagawa K, Maughan WL, Burkhoff D, Sagawa K. Left ventricular interaction with arterial load studied in isolated canine ventricle. Am J Phys. 1983;245:773–80.

    Google Scholar 

  44. Chemla D, Antony I, Lecarpentier Y, Nitenberg A. Contribution of systemic vascular resistance and total arterial compliance to effective arterial elastance in humans. Am J Physiol Heart Circ Physiol. 2003;285:614–20.

    Article  Google Scholar 

  45. Lancellotti P, et al. Impact of global left ventricular afterload on left ventricular function in asymptomatic severe aortic stenosis: a two-dimensional speckle-tracking study. Eur J Echocardiogr. 2010;11:537–43.

    Article  PubMed  Google Scholar 

  46. Rieck ÅE, et al. Global left ventricular load in asymptomatic aortic stenosis: covariates and prognostic implication (the SEAS trial). Cardiovasc Ultrasound. 2012;10:43.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hachicha Z, Dumesnil JG, Pibarot P. Usefulness of the valvuloarterial impedance to predict adverse outcome in asymptomatic aortic stenosis. J Am Coll Cardiol. 2009;54:1003–11.

    Article  PubMed  Google Scholar 

  48. Lancellotti P, et al. Risk stratification in asymptomatic moderate to severe aortic stenosis: the importance of the valvular, arterial and ventricular interplay. Heart. 2010;96:1364–71.

    Article  PubMed  Google Scholar 

  49. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med. 1990;322:1561–6.

    Article  CAS  PubMed  Google Scholar 

  50. Haider AW, Larson MG, Benjamin EJ, Levy D. Increased left ventricular mass and hypertrophy are associated with increased risk for sudden death. J Am Coll Cardiol. 1998;32:1454–9.

    Article  CAS  PubMed  Google Scholar 

  51. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Left ventricular mass and incidence of coronary heart disease in an elderly cohort. The Framingham Heart Study. Ann Intern Med. 1989;110:101–7.

    Article  CAS  PubMed  Google Scholar 

  52. Koren MJ, Devereux RB, Casale PN, Savage DD, Laragh JH. Relation of left ventricular mass and geometry to morbidity and mortality in uncomplicated essential hypertension. Ann Intern Med. 1991;114:345–52.

    Article  CAS  PubMed  Google Scholar 

  53. Verdecchia P, et al. Left ventricular hypertrophy as an independent predictor of acute cerebrovascular events in essential hypertension. Circulation. 2001;104:2039–44.

    Article  CAS  PubMed  Google Scholar 

  54. Wicker P, Tarazi RC, Kobayashi K. Coronary blood flow during the development and regression of left ventricular hypertrophy in renovascular hypertensive rats. Am J Cardiol. 1983;51:1744–9.

    Article  CAS  PubMed  Google Scholar 

  55. Sato F, Isoyama S, Takishima T. Normalization of impaired coronary circulation in hypertrophied rat hearts. Hypertension. 1990;16:26–34.

    Article  CAS  PubMed  Google Scholar 

  56. Kingsbury M, Mahnke A, Turner M, Sheridan D. Recovery of coronary function and morphology during regression of left ventricular hypertrophy. Cardiovasc Res. 2002;55:83–96.

    Article  CAS  PubMed  Google Scholar 

  57. Nunez E, Hosoya K, Susic D, Frohlich ED. Enalapril and losartan reduced cardiac mass and improved coronary hemodynamics in SHR. Hypertension. 1997;29:519–24.

    Article  CAS  PubMed  Google Scholar 

  58. Brilla CG, Janicki JS, Weber KT. Cardioreparative effects of lisinopril in rats with genetic hypertension and left ventricular hypertrophy. Circulation. 1991;83:1771–9.

    Article  CAS  PubMed  Google Scholar 

  59. Motz W, Strauer BE. Improvement of coronary flow reserve after long-term therapy with enalapril. Hypertension. 1996;27:1031–8.

    Article  CAS  PubMed  Google Scholar 

  60. Xu R, et al. Relationship between regression of hypertensive left ventricular hypertrophy and improvement of coronary flow reserve. Zhonghua Yi Xue Za Zhi. 2003;83:658–61.

    PubMed  Google Scholar 

  61. Mizuno R, Fujimoto S, Saito Y, Okamoto Y. Optimal antihypertensive level for improvement of coronary microvascular dysfunction: the lower, the better? Hypertension. 2012;60:326–32.

    Article  CAS  PubMed  Google Scholar 

  62. Davies JE, et al. Evidence of a dominant backward-propagating ‘suction’ wave responsible for diastolic coronary filling in humans, attenuated in left ventricular hypertrophy. Circulation. 2006;113:1768–78.

    Article  PubMed  Google Scholar 

  63. Breisch EA, White FC, Nimmo LE, Bloor CM. Cardiac vasculature and flow during pressure-overload hypertrophy. Am J Physiol Heart Circ Physiol. 1986;251:1031–7.

    Article  Google Scholar 

  64. Mueller TM, et al. Effect of renal hypertension and left ventricular hypertrophy on the coronary circulation in dogs. Circ Res. 1978;42:543–9.

    Article  CAS  PubMed  Google Scholar 

  65. Bishop SP, et al. Coronary vascular morphology in pressure-overload left ventricular hypertrophy. J Mol Cell Cardiol. 1996;28:141–54.

    Article  CAS  PubMed  Google Scholar 

  66. Ecker T, et al. Decreased cardiac concentration of cGMP kinase in hypertensive animals. An index for cardiac vascularization? Circ Res. 1989;65:1361–9.

    Article  CAS  PubMed  Google Scholar 

  67. Rakusan K, Flanagan MF, Geva T, Southern J, Van Praagh R. Morphometry of human coronary capillaries during normal growth and the effect of age in left ventricular pressure-overload hypertrophy. Circulation. 1992;86:38–46.

    Article  CAS  PubMed  Google Scholar 

  68. Villari B, et al. Regression of coronary artery dimensions after successful aortic valve replacement. Circulation. 1992;85:972–8.

    Article  CAS  PubMed  Google Scholar 

  69. Schwartzkopff B, et al. Morphometric investigation of human myocardium in arterial hypertension and valvular aortic stenosis. Eur Heart J. 1992;13:17–23.

    Article  PubMed  Google Scholar 

  70. Monrad ES, et al. Time course of regression of left ventricular hypertrophy after aortic valve replacement. Circulation. 1988;77:1345–55.

    Article  CAS  PubMed  Google Scholar 

  71. Gould KL, Carabello BA. Why angina in aortic stenosis with normal coronary arteriograms? Circulation. 2003;107:3120–3.

    Article  Google Scholar 

  72. Carpeggiani C, et al. Coronary flow reserve in severe aortic valve stenosis: a positron emission tomography study. J Cardiovasc Med. 2008;9:893–8.

    Article  Google Scholar 

  73. Kupari M, Turto H, Lommi J. Left ventricular hypertrophy in aortic valve stenosis: preventive or promotive of systolic dysfunction and heart failure? Eur Heart J. 2005;26:1790–6.

    Article  PubMed  Google Scholar 

  74. Zhu YH, Zhu YZ, Spitznagel H, Gohlke P, Unger T. Substrate metabolism, hormone interaction, and angiotensin-converting enzyme inhibitors in left ventricular hypertrophy. Diabetes. 1996;45:59–65.

    Article  Google Scholar 

  75. Just H, Frey M, Zehender M. Calcium antagonist drugs in hypertensive patients with angina pectoris. Eur Heart J. 1996;17:20–4.

    Article  PubMed  Google Scholar 

  76. Anversa P, Ricci R, Olivetti G. Coronary capillaries during normal and pathological growth. Can J Cardiol. 1986;2:104–13.

    CAS  PubMed  Google Scholar 

  77. Paulus WJ, Heyndrickx GR, Nellens P, Andries E. Impaired relaxation of the hypertrophied left ventricle in aortic stenosis: effects of aortic valvuloplasty and of postextrasystolic potentiation. Eur Heart J. 1988;9:25–30.

    Article  PubMed  Google Scholar 

  78. Antony I, Nitenberg A, Foult JM, Aptecar E. Coronary vasodilator reserve in untreated and treated hypertensive patients with and without left ventricular hypertrophy. J Am Coll Cardiol. 1993;22:514–20.

    Article  CAS  PubMed  Google Scholar 

  79. Brush JE, et al. Angina due to coronary microvascular disease in hypertensive patients without left ventricular hypertrophy. N Engl J Med. 1988;319:1302–7.

    Article  PubMed  Google Scholar 

  80. Rodriguez-Porcel M, et al. Functional and structural remodeling of the myocardial microvasculature in early experimental hypertension. Am J Physiol Heart Circ Physiol. 2006;290:978–84.

    Article  Google Scholar 

  81. Crabos M, et al. Reduced basal NO-mediated dilation and decreased endothelial NO-synthase expression in coronary vessels of spontaneously hypertensive rats. J Mol Cell Cardiol. 1997;29:55–65.

    Article  CAS  PubMed  Google Scholar 

  82. McGoldrick RB, Kingsbury M, Turner MA, Sheridan DJ, Hughes AD. Left ventricular hypertrophy induced by aortic banding impairs relaxation of isolated coronary arteries. Clin Sci. 2007;113:473–8.

    Article  CAS  Google Scholar 

  83. Kingsbury MP, Turner MA, Flores NA, Bovill E, Sheridan DJ. Endogenous and exogenous coronary vasodilatation are attenuated in cardiac hypertrophy: a morphological defect? J Mol Cell Cardiol. 2000;32:527–38.

    Article  CAS  PubMed  Google Scholar 

  84. McAinsh AM, et al. Cardiac hypertrophy impairs recovery from ischaemia because there is a reduced reactive hyperaemic response. Cardiovasc Res. 1995;30:113–21.

    Article  CAS  PubMed  Google Scholar 

  85. Koyanagi S, Eastham CL, Harrison DG, Marcus ML. Increased size of myocardial infarction in dogs with chronic hypertension and left ventricular hypertrophy. Circ Res. 1982;50:55–62.

    Article  CAS  PubMed  Google Scholar 

  86. Mihaljevic T, Paul S, Cohn LH, Wechsler A. Pathophysiology of aortic valve disease cardiac surgery in the adult. New York: McGraw-Hill; 2003. p. 791–810.

    Google Scholar 

  87. Kalkman EA, et al. Determinants of coronary reserve in rats subjected to coronary artery ligation or aortic banding. Cardiovasc Res. 1996;32:1088–95.

    Article  CAS  PubMed  Google Scholar 

  88. Tomanek RJ, Wangler RD, Bauer CA. Prevention of coronary vasodilator reserve decrement in spontaneously hypertensive rats. Hypertension. 1985;7:533–40.

    Article  CAS  PubMed  Google Scholar 

  89. Opherk D, et al. Reduction of coronary reserve: a mechanism for angina pectoris in patients with arterial hypertension and normal coronary arteries. Circulation. 1984;69:1–7.

    Article  CAS  PubMed  Google Scholar 

  90. Ishihara K, et al. Coronary blood flow after the regression of pressure-overload left ventricular hypertrophy. Circ Res. 1992;71:1472–81.

    Article  CAS  PubMed  Google Scholar 

  91. Ito N, Isoyama S, Takahashi T, Takishima T. Coronary dilator reserve and morphological changes after relief of pressure-overload in rats. J Mol Cell Cardiol. 1993;25:3–14.

    Article  CAS  PubMed  Google Scholar 

  92. Barone-Rochette G, et al. Prognostic significance of LGE by CMR in aortic stenosis patients undergoing valve replacement. J Am Coll Cardiol. 2014;64:144–54.

    Article  PubMed  Google Scholar 

  93. Davies JE, et al. Arterial pulse wave dynamics after percutaneous aortic valve replacement/clinical perspective. Circulation. 2011;124:1565–72.

    Article  PubMed  Google Scholar 

  94. Broyd CJ, Rigo F, Nijjer S, Sen S, Petraco R, Al-Lamee R, Foin N, Chuwuemeka A, Anderson J, Parker J, Malik IS, Mikhail GW, Francis DP, Parker K, Hughes AD, Mayet J, Davies JE. Regression of left ventricular hypertrophy provides additive physiological benefit following treatment of aortic stenosis: Insights from serial coronary wave intensity analysis. Acta Physiologica. 2018;224:e13109.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Broyd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Austria, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Broyd, C.J., Davies, J.E.R. (2019). Interaction Between the Haemodynamics of Coronary Flow and Aortic Valve Pathologies. In: Stanger, O., Pepper, J., Svensson, L. (eds) Surgical Management of Aortic Pathology. Springer, Vienna. https://doi.org/10.1007/978-3-7091-4874-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-4874-7_7

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-4872-3

  • Online ISBN: 978-3-7091-4874-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics