Skip to main content

Deposition of Scar Tissue in the Central Nervous System

  • Conference paper
Trauma and Regeneration

Part of the book series: Acta Neurochirurgica Supplementum ((NEUROCHIRURGICA,volume 32))

Summary

Standard parasagittal lesions were placed stercotactically in the cerebral hemispheres of neonatal and adult rats in order to compare scarring in the immature and mature animal. Lesions were examined by light and electron-microscopy and immunofluorescence to study the astrocyte reaction, collagen deposition, and the formation of the basement memebrane of the glia limitans.

Normal mature scarring characterized by the deposition of collagen, astrocyte end-feet alignment over a glia limitans, and the permanent presence of mesodermal cells (fibroblasts and macrophages) in the core of the lesion, does not occur in wounds before 8–10 days post-partum (dpp). Instead there is no deposition of collagen, and only a transitory astrocyte response occurs with the formation of an interrupted glia limitans. These latter features disappear with time so that the wound is ultimately obliterated by the growth of axons and dendrites through the lesion. Mature scarring is attained over 8–12 dpp when increasing amounts of collagen are deposited and a continuous permanent glia limitans is formed.

The acquisition of the mature response to injury from 8–12 dpp may be correlated with the presence of increasing titres of a fibroblast growth factor (FGF), derived from autolytic digestion of injured brain tissue. We have investigated FGF activity using a 3 T 3 fibroblast tissue culture assay to detect mitogenic activity in brain extracts from rats lesioned at different ages and from leukodystrophic mice which have no myelin.

Our results show that high titres of FGF are present in the developing brain long before myelination commences, and that normal levels of FGF are found in the brains of leukodystrophic mice which have no myelin. Scarring in brain lesions in these mutants is quite normal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adrian, K., Williams, M. G., Cell proliferation in injured spinal cord. An electron microscopic study. J. comp. Neurol. 151 (1973), 1–24.

    Article  PubMed  Google Scholar 

  2. Barrettt, C. P., Guth, L., Donati, E. J., Krikorian J. G., Astroglial reaction in the grey matter of lumbar segments after mid-thoracic transection of the adult rat spinal cord. Exp. Neurol. 13 (1981), 565–577.

    Google Scholar 

  3. Bernfield, M. R., Banerjee, S. D., The basal lamina of epithelial-mesenchymal morphogenetic interactions: In: Biology and chemistry of basement membranes (Kefalidcs, N. A., ed.), pp. 137–148. New York: Academic Press. 1978.

    Google Scholar 

  4. Bensted, J. P. M., Dobbing, J., Morgan, R. S., Reld, R. T. W., Payling Wright, G., Neurological development of myelination in the spinal cord of the chick embryo. J. Embryol. Exp. Morphol. 5 (1957), 428–437.

    Google Scholar 

  5. Berry, M., Henry, J., Response of neonatal CNS to injury. Neuropath. Appl. Neurobiol. 2 (1975), 166.

    Google Scholar 

  6. Bignami, A., Dahl, D., The astroglial response to stabbing. Immunofluorescence studies with antibodies to astrocyte specific protein (GFA) in mammalian and sub-mammalian vertebrates. Neuropath. Appl. Neurobiol. 2 (1976), 99–110.

    Article  Google Scholar 

  7. Bignami, A., Ralston, H., The cellular reaction to Wallerian degeneration in the central nervous system of the cat. Brain. Res. 13 (1969), 444–461.

    Article  PubMed  CAS  Google Scholar 

  8. Bluemink, J. G., Maurik, P. van Lawson, K. A., Intimate cell contacts at the epitheliaVmesenchymal interface in embryonic mouse. J. Ultrastruct. Res. 55 (1976), 257–270.

    Article  PubMed  CAS  Google Scholar 

  9. Boutwell, T. K., Factors promoting epidermal cell proliferation. In: The surgical wound (Duneen, P., Hildick-Smith, G., eds.), pp. 90–96. Philadelphia: Lea and Febiger. 1981.

    Google Scholar 

  10. Chiang, T. M., Whitaker, J. N., Seyer, J. M., Kang, A. H., Effect of peptides of bovine myelin basic protein in dermal fibroblasts. J. Neurosci. Res. 5 (1980), 439–445.

    Article  PubMed  CAS  Google Scholar 

  11. Choi, B. M., Lapham, L. W., Radial glia in the human foetal cerebrum: A combined Golgi, immunofluorescent and electron microscopic study. Brain Res. 148 (1978), 295–311.

    Article  PubMed  CAS  Google Scholar 

  12. Colmant, H. J., Allgemeine Histopathologie der Glia. Acta Neuropath. ( Berl.) Suppl. IV (1968), 61–76.

    Google Scholar 

  13. Cook, R. D., Wisniewski, H. M., The role of oligodendroglia and astroglia in Wallerian degeneration of the optic nerve. Brain Res. 61 (1973), 191–206.

    Article  PubMed  CAS  Google Scholar 

  14. Duance, J. C., Restall, D. J., Beard, H., Bourne, F. J., Barley, A. J., The location of three collagen types in skeletal muscle. FEBS Lett. 79 (1977), 248–252.

    Article  Google Scholar 

  15. Dupouney, P., Jacque, C., Bourne, J. M., Cesselin, F., Privat, A., Baumann, N., Immunochemical studies on myelin basic protein in shiverer mouse devoid of major dense line of myelin. Neurosci. Lett. 12 (1979), 113–118.

    Article  Google Scholar 

  16. Friede, R. L., A histochemical study of DPN-diaphorase in human white matter; with some notes on myelination. J. Neurochem. 8 (1961), 17–30.

    Article  PubMed  CAS  Google Scholar 

  17. Gospodarowicz, D., Localisation of a fibroblast growth factor and its effect alone and with hydrocortisone on 3 T 3 cell growth. Nature 249 (1974), 123–127.

    Article  PubMed  CAS  Google Scholar 

  18. Gospodarowicz, D., Humoral control of cell proliferation. The role of fibroblast growth factor in regeneration, angiogenesis, wound healing and neoplastic growth. In: Membranes and neoplasia: New approaches and strategies (Marchesi, V. T., ed.), pp. 1–19. New York: Alan R. Liss. 1976.

    Google Scholar 

  19. Gospodarowicz, D., Rudland, P., Lindstrom, J., Benirschke, K., Fibroblast growth factor, localization, purification, mode of action and physiological significance. Adv. Metab. Disord. 8 (1975), 301–335.

    PubMed  CAS  Google Scholar 

  20. Gospodarowicz, D., Lui, G. -M., Cheng, J., Purification in high yield of brain fibroblast growth factor by preparative isoelectric focusing at pH 9.6. J. Biol. Chem. 257 (1982), 12266–12276.

    PubMed  CAS  Google Scholar 

  21. Hogan, E. L., Animal models of genetic disorders of myelin. In: Myelin (Morell, P., ed.), pp. 489–520. New York: Plenum Press. 1977.

    Google Scholar 

  22. Hunt, D. K., Andrews, W. S., Halliday, B., Greenburg, G., Knoghton, D., Clark, R. A., Thakrai, K. K., Coagulation and macrophage stimulation of angiogenesis and wound healing. In: The surgical wound (Duneen, P., Hildick-Smith, G., eds.), pp. 1–18. Philadelphia: Lea and Febiger. 1981.

    Google Scholar 

  23. Ibrahim, M. Z. M., Glycogen and its related enzymes of metabolism in the central nervous system. Adv. Anat. Embryol. Biol. 52 (1975), 3–89.

    CAS  Google Scholar 

  24. Imamoto, K., Leblond, C. P., Presence of labelled monocytes, macrophages and microglia in association with a stab wound of the brain after an injection of bone marrow cells labelled with 3 H-uridine into rats. J. comp. Neurol. 174 (1977), 255–280.

    Article  PubMed  CAS  Google Scholar 

  25. Jacobson, S., Sequence of myelination in the brain of the albino rat. A. Cerebral cortex, thalamus and related structures J. comp. Neurol. 121 (1963), 5–29.

    CAS  Google Scholar 

  26. Kellet, J. G., Tanaka, T., Rowe, J. M., Shiu, R. P. C., Friesen, H. G., The characterization of growth factor activity in human brain. J. Biol. Chem. 256 (1981), 54–58.

    Google Scholar 

  27. Krikorian, J. G., Guth, L., Donati, E. J., Origin of connective tissue scar in the transected rat spinal cord. Exp. Neurol. 72 (1981), 698–707.

    Article  PubMed  CAS  Google Scholar 

  28. Landis, D. M. D., Reese, T. S., Arrays of particles in freeze fractured astrocytic membrane. J. Cell. Biol. 60 (1974), 316–328.

    Article  PubMed  CAS  Google Scholar 

  29. Latov, N., Nilaver, G., Zimmerman, E. A., Johnson, W. G., Silverman, A.-J., Defendini, R., Cote, L., Fibrillar astrocytes proliferate to brain injury. Dev. Biol. 72 (1979), 381–384.

    Article  PubMed  CAS  Google Scholar 

  30. Lemmon, S. K., Riley, M. C., Thomas, K. A., Hoover, G. A., Maciag, T., Bradshaw, R. A., Bovine fibroblast growth factor: comparison of brain and pituitary preparations. J. Cell. Biol. 95 (1982), 162–169.

    Article  PubMed  CAS  Google Scholar 

  31. Lowry, O. H., Roosebrough, N. J., Farr, A. L., Randall, R. F., Protein measurements with Folin phenol reagent. J. Biol. Chem. 193 (1951), 265–275.

    PubMed  CAS  Google Scholar 

  32. Matthieu, J.-M., Ginaleski, H., Friede, R. L., Cohen, S. R., Low myelin basic protein levels and normal myelin in peripheral nerves of myelin deficient mice (mid). Neuroscience 5 (1980), 2315–2320.

    Article  PubMed  CAS  Google Scholar 

  33. Murabe, Y., Ibata, T., Sano, Y., Morphological studies on neuroglia. II. Response of glial cells to kianic acid-induced lesions. Cell Tissue Res. 216 (1981), 569–580.

    Article  PubMed  CAS  Google Scholar 

  34. Nathan, C. F., Cohen, Z. A., Cellular components of inflammation, monocytes and macrophages. In: Textbook of rheumatology (Kelley, W. N., Harris. E. D., Jr., Ruddy, S., Sledge, C. B., eds.), pp. 136–162. Philadelphia: Saunders.

    Google Scholar 

  35. Nathan, C. F., Murray, H. W., Cohn, Z. A., The macrophage as an effector cell. N. Eng. J. Med. 303 (1980), 622–626.

    Article  CAS  Google Scholar 

  36. Persson, L., Cellular reactions to small cerebral stab wounds in the rat frontal lobe. Virch. Arch. B. Cell. Path. 22 (1976), 21–37.

    CAS  Google Scholar 

  37. Peters, A., Palay, S. L., Webster, H. de F., The fine structure of the nervous system. Philadelphia: Saunders. 1976.

    Google Scholar 

  38. Ross, R., The fibroblast and wound repair. Biol. Rev. 43 (1968), 51–96.

    CAS  Google Scholar 

  39. Schonbach, J., Hu, J. K., Friede, R. L., Cellular and chemical changes during myelination: Histologic, autoradiographic, histochemical and biochemical data on myelination in the pyramidal tract and corpus callosum of rat. J. comp. Neurol. 134 (1968), 21–38.

    Article  PubMed  CAS  Google Scholar 

  40. Schultz, R. L., Pease, D. C., Cicatrix formation in rat cerebral cortex as revealed by electron microscopy. Amer. J. Path. 35 (1959), 1017–1042.

    PubMed  CAS  Google Scholar 

  41. Seggie, J., Berry, M., Ontogeny of interhemispheric evoked potentials in the rat: Significance of myelination of the corpus callosum. Exptl. Neurol. 35 (1972), 215–232.

    Article  CAS  Google Scholar 

  42. Sidman, R. L., Rakic, P., Neuronal migration with special reference to developing human brain: A review. Brain Res. 6 2 (1973), 1–35

    Article  Google Scholar 

  43. Sievers, J., Mangold, U., Berry, M., Allen, C., Schlossberger, H. G., Experimental studies on cerebellar foliation. I. A qualitative morphological analysis of cerebellar foliation defects after neonatal treatment with 6-OHDA in the rat. J. comp. Neurol. 203 (1981), 751–769.

    CAS  Google Scholar 

  44. Skoff, R. P., The fine structure of pulse-labelled (3H-thymidine) cells in degenerating rat optic nerve. J. comp. Neurol. 161 (1975), 595–612.

    Article  PubMed  CAS  Google Scholar 

  45. Skoff, R. P., Vaughn, J. E., An autoradiographic study of cellular proliferation in degenerating rat optic nerve. J. comp. Neurol. 141 (1971), 133–156.

    Article  PubMed  CAS  Google Scholar 

  46. Spatz, H., Über die Vorgänge nach experimenteller Rückenmarksdurchtrennung mit besonderer Berücksichtigung der Unterschiede der Reaktionsweise des reifen and des unreifen Gewebes. In: Histologische and histopathologische Arbeiten über die Großhirnrinde ( Nissl, F., Alzheimer, A., eds.), pp. 49–354. Jena: G. Fischer. 1921.

    Google Scholar 

  47. Steedman, H. F., A new ribboning embedding medium for histology. Nature 197 (1957), 13–45.

    Google Scholar 

  48. Sternberger, L. A., In: Immuno-cytochemistry. New York: Wiley. 1979.

    Google Scholar 

  49. Sumi, S. M., Hager, H., Electron microscope study of experimental porencephaly. J. Neuropath. Exp. Neurol. 27 (1968), 1–38.

    Article  Google Scholar 

  50. Tennyson, V. M., Electron microscopic study of the developing neuroblast of the dorsal root ganglion of the rabbit embryo. J. comp. Neurol. 124 (: 965 ), 267–318.

    Google Scholar 

  51. Thomas, K. A., Riley, M. L., Lemmon, S. K., Baglan, N. C., Bradshaw, R. A., Brain-fibroblast growth factor: nonidentity with myelin basic protein fragments. J. Biol. Chem. 25, 5 (1980), 5517–5520.

    Google Scholar 

  52. Vaughn, J. E., Hinds, P. L., Skoff, R. P., Electron microscopic studies of Wallerian degeneration in the optic nerve of the rat. I. The multipotential glia. J. comp. Neurol. 140 (1970), 175–206.

    Article  CAS  Google Scholar 

  53. Vaughn, J. E., Pease, D. C., Electron microscopic studies of Wallerian degeneration in rat optic nerves. II. Astrocytes, oligodendrocytes and adventitial cells. J. comp. Neurol. 140 (1970), 207 226.

    Google Scholar 

  54. Wahl, S. M., Role of mononuclear cells in wound repair process. In: The surgical wound (Dineen, P., Hildick-Smith, G., eds.), pp. 63–74. Philadelphia: Lea and Febiger. 1981.

    Google Scholar 

  55. Westall, F. C., Lennon, V. A., Gospodarowicz, D., Brain-derived fibroblast growth factor: identity with a fragment of the basic protein of myelin. Proc. nat. Acad. Sei. U.S.A. 75 (1978), 4675–4678.

    Article  CAS  Google Scholar 

  56. Woodhams, P. L., Basco, E., Hajos, F., Csillag, A., Balazs, R., Radial glia in the developing mouse cerebral cortex and hippocampus. Anat. Embryol. 163 (1981), 331–343.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Wien

About this paper

Cite this paper

Berry, M. et al. (1983). Deposition of Scar Tissue in the Central Nervous System. In: Adams, J.H. (eds) Trauma and Regeneration. Acta Neurochirurgica Supplementum, vol 32. Springer, Vienna. https://doi.org/10.1007/978-3-7091-4147-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-4147-2_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-81775-9

  • Online ISBN: 978-3-7091-4147-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics