Skip to main content

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 462))

Abstract

This document deals with applications of mixture theory to the mechanics of porous media, with particular reference to living tissues, ionised media and finite deformation. The theory is built from first principles and the presentation is worked out for first year master students. References to experimental work and to applications are included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • M A Biot. Theory of finite deformations of porous solids. Indiana University Mathematics J, 21 (7): 597–620, 1972.

    Article  MathSciNet  Google Scholar 

  • H.P.G. Darcy. Les fontaines publiques de la ville de Dijon. Delmont, Paris, France, 1856.

    Google Scholar 

  • H J de Heus. Verification of mathematical models describing soft charged hydrated tissue behaviour. PhD dissertation, Eindhoven University of Technology, Department of Mechanical Engineering, Dec 1994.

    Google Scholar 

  • A.J.H. Frijns, J.M. Huyghe, and J.D. Janssen. A validation of the quadriphasic mixture theory for intervertebral disc tissue. Int. J. Eng. Sci., 35: 1419–1429, 1997.

    Article  MATH  Google Scholar 

  • Y.C. Fung. Biomechanics: Mechanical properties of living tissues. Springer Verlag, New York, USA, 1993.

    Google Scholar 

  • J. M. Huyghe, C.F. Janssen, Y. Lanir, C.C. van Donkelaar, A. Maroudas, and D.H. van Campen. Experimental measurement of elctrical conductivity and electro-osmotic permeability of ionised porous media. In W. Ehlers and J. Bluhm, editors, Porous media: theoretical, experimental and numerical applications, pages 295–313. Springer Verlag, Berlin, Germany, 2002a.

    Chapter  Google Scholar 

  • J.M. Huyghe. Intra-extrafibrillar mixture formulation of soft charged hydrated tissues. Journal of Theoretical and Applied mechanics, 37 (3): 519–536, 1999.

    MATH  Google Scholar 

  • J.M. Huyghe, G.B. Houben, M.R. Drost, and C.C. van Donkelaar. An ionised/nonionised dual porosity model of intervertebral disc tissue: experimental quantification of parameters. Biomechanics and modelling in mechanobiology, 2: 3–19, 2003.

    Article  Google Scholar 

  • J.M. Huyghe, C.F. Janssen, C.C. van Donkelaar, and Y. Lanir. Measuring principles of frictional coefficients in cartilaginous tissues and its substitutes. Biorheology, 39: 47–53, 2002b.

    Google Scholar 

  • J.M. Huyghe and J.D. Janssen. Quadriphasic mechanics of swelling incompressible porous media. Int. J. Eng. Sci., 35: 793–802, 1997.

    Article  MATH  Google Scholar 

  • J.M. Huyghe and J.D. Janssen. Thermo-chemo-electro-mechanical formulation of saturated charged porous solids. Transport in Porous Media, 34: 129–141, 1999.

    Article  Google Scholar 

  • A. Katchalsky and P.F. Curran. Nonequilibrium thermodynamics in biophysics. Harvard University Press, Cambridge, Ma, U.S.A., 1965.

    Google Scholar 

  • Y. Lanir, J. Seybold, R. Schneiderman, and J. M. Huyghe. Partition and diffusion of sodium and chloride ions in soft charged foam: the effect of external salt concentration and mechanical deformation. Tissue Engineering, 4 (4): 365–378, 1998.

    Article  Google Scholar 

  • A Maroudas. Physicochemical properties of articular cartilage, chapter 4, pages 215–290. In: M A R Freeman, ed. Adult articular cartilage. 2nd ed. Tunbridge Wells, Kent, UK: Pitman medical, 1979.

    Google Scholar 

  • A. Maroudas and P.G. Bullough. Permeability of articular cartilage. Nature, 219: 1260–1261, 1968.

    Article  Google Scholar 

  • W. Nernst. Zur kinetik der in loesung befindlichen koerper. Z. Phys. Chem., 2: 613–637, 1888.

    Google Scholar 

  • W. Nernst. Die electromotorische wirksamkeit der jonen. Z. Phys. Chem., 4: 129–181, 1889.

    Google Scholar 

  • A.A.H.J. Sauren, M.C. van Hout, A.A. van Steenhoven, F.E. Veldpaus, and J.D. Janssen. The mechanical properties of porcine aortic valve tissues. J. Biomech., 16: 327–337, 1983.

    Article  Google Scholar 

  • H Snijders. A triphasic model of the intervertebral disc. PhD dissertation, University of Maastricht, The Netherlands, Department of Health Sciences, 1994.

    Google Scholar 

  • A. J. Staverman. Non-equilibrium thermodynamics of membrane processes. Trans. Faraday Soc., 48: 176–185, 1952.

    Article  Google Scholar 

  • R. van Loon, J.M. Huyghe, M.W. Wijlaars, and F.P.T. Baaijens. 3d fe implementation of an incompressible quadriphasic mixture model. Int. J. Numer. Meth. Engng.,2003. in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Wien

About this chapter

Cite this chapter

Huyghe, J.M., Bovendeerd, P.H.M. (2004). Swelling media: concepts and applications. In: Loret, B., Huyghe, J.M. (eds) Chemo-Mechanical Couplings in Porous Media Geomechanics and Biomechanics. International Centre for Mechanical Sciences, vol 462. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2778-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2778-0_4

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-21323-0

  • Online ISBN: 978-3-7091-2778-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics