Skip to main content

Old and New Non-Gradient Methods in Engineering Optimization

  • Conference paper
Emerging Methods for Multidisciplinary Optimization

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 425))

Abstract

Current interest in non-gradient optimization can be attributed to two, distinct developments. The first stems from studying natural processes and the second from fast progress in the computing environment. The first has resulted in new optimization techniques like simulated annealing, tabu search and genetic algorithms whilst the second has made many of the existing zero order methods computationally affordable. This chapter discusses simulated annealing, tabu search, dynamic programming, random methods and other heuristics. A variety of illustrative examples is provided together with practical examples drawn from structural mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aarts, E., and Korst, J. (1989). Simulated Annealing and Boltzman Machines. Chichester - New York: John Wiley and Sons. 272 p.

    Google Scholar 

  • Aarts, E., and Lenstra, J.K., eds, (1998). Local Search in Combinatorial Optimization. Chichester - New York: John Wiley and Sons. 512 p.

    Google Scholar 

  • ABAQUS: Hibbit, Karlsson and Sorensen Inc., (1998). ABAQUS. User’s and Theory Manual,Version 5.8, Pawtucket, RI 02860–4847, USA.

    Google Scholar 

  • Andreev, L.V., and Dyachenko, V.E. (1977). Application of dynamic programming to studying the stability of shells of revolution with finite displacements. Soviet Aeronautics 20: 1–6.

    ADS  Google Scholar 

  • Arora, J.S., Elwakeil, O.A., and Chahande, A.I. (1995). Global optimization methods for engineering applications: a review. Structural Optimization 9: 137–159.

    Article  Google Scholar 

  • Balling, R.J. (1991). Optimal steel frame design by simulated annealing. Journal of Structural Engineering 117: 1780–1795.

    Article  Google Scholar 

  • Balling, R.J. (1996). Application of the simulated annealing algorithm to structural design. In Grierson, D.E., and Hajela, P., eds., Emergent Computing Methods in Engineering Design. Berlin: Springer. 283–293.

    Chapter  Google Scholar 

  • Bellman, R.E. (1957). Dynamic Programming. Princeton: Princeton University Press. New Jersey. Bellman, R.E., and Dreyfuss, S.E. (1962). Applied Dynamic Programming. Princeton: Princeton University Press. New Jersey.

    Google Scholar 

  • Bennage, W.A., and Dhingra, A.K. (1995a). Single and multiobjective structural optimization in discrete-continuous variables using simulated annealing. International Journal for Numerical Methods in Engineering 38: 2753–2773.

    Article  MATH  ADS  Google Scholar 

  • Bennage, W.A., and Dhingra A.K. (1995b). Optimization of truss topology using tabu search. International Journal for Numerical Methods in Engineering 38: 4035–4052.

    Article  MATH  ADS  Google Scholar 

  • Blachut, J. (1977). Optimal design of a compressed rod with large deflections by means of dynamic programming. Mechanika Teoretyczna i Stosowana 15: 375–385.

    MathSciNet  MATH  Google Scholar 

  • Blachut, J. (1988). Search for optimal torispherical end closures under buckling constraints. International Journal of Mechanical Sciences 31: 623–633.

    Article  Google Scholar 

  • Blachut, J. (1991). Shape optimization of FRP dome closures under buckling constraints. In Eschenauer, H.A., Matteck, C., and Olhoff, N., eds., Engineering Optimization in Design Processes. Berlin: Springer-Verlag. 155–164.

    Chapter  Google Scholar 

  • Blachut, J. (1992). Influence of meridional shaping on the collapse strength of FRP domes. Engineering Optimization 19: 65–80.

    Article  Google Scholar 

  • Blachut, J. (1997). Minimum weight of internally pressurised domes subject to plastic load failure. Thin-Walled Structures 27: 127–146.

    Article  Google Scholar 

  • Blachut, J., and Wang, P. (1999). On the performance of barrel-shaped composite shells subjected to hydrostatic pressure. In Toropov, V.V., ed., Engineering Design Optimization. Bradford: MCB University Press. 59–65.

    Google Scholar 

  • Blachut, J., and Wang, P. (2000). Buckling of barreled shells subjected to external hydrostatic pressure. In Deardorff, A.F., ed., PVP- Vol. 407 Pressure Vessel and Piping Codes and Standards. New York: ASME. 107–114.

    Google Scholar 

  • Bland, J.A. (1994). A tabu search approach to engineering optimisation. In Rzevsky, G., Adey, R.A., and Russell, D.W., eds., Application of Artificial Intelligence in Engineering IX. Southampton: Computational Mechanics Publ Limited. 423–430.

    Google Scholar 

  • Bland, J.A. (1995). Discrete-variable optimal structural design using tabu search. Structural Optimization 10: 87–93.

    Google Scholar 

  • Bland, J.A. (1998). Structural design optimization with reliability constraints using tabu search. Engineering Optimization 30: 55–74.

    Article  Google Scholar 

  • Bohachewsky, I.O., Johnson, M.E., and Stein, M.L. (1986). Generalized simulated annealing for function optimization. Technometrics 28: 209–217.

    Article  Google Scholar 

  • Botello, S., Marroquin, J.L., Onate, E., and van Horebeek, J. (1999). Solving structural optimization problems with genetic algorithms and simulated annealing: Éii/ernational Journal for Numerical Methods in Engineering 45: 1069–1084.

    MATH  ADS  Google Scholar 

  • Box, M.J. (1965). A new method of constrained optimization and a comparison with other methods. Computer Journal 8: 42–52.

    Article  MathSciNet  MATH  Google Scholar 

  • Bushnell, D. (1976). Bosor 5–program for buckling of elastic-plastic complex shells of revolution including large deflections and creep. Computers and Structures 6: 221–239.

    Article  MATH  Google Scholar 

  • Bushnell, D. (1977). Bosor4 program for stress, buckling, and vibration of complex shells of revolution. In Structural Mechanics Software Series. Charlottesville: University Press of Virginia. VA. 11–143.

    Google Scholar 

  • Ceranic, B., Fryer, C., and Baines, R.W. (2000). An application of simulated annealing to the optimum design of reinforced concrete retaining structures. Computers and Structures, to appear.

    Google Scholar 

  • Chen, G-S., Bruno, R.J., and Salama, M. (1991). Optimal placement of active/passive members in truss structures using simulated annealing. American Institute of Aeronautics and Astronautics Journal 29: 1327–1334.

    Article  Google Scholar 

  • Connor, A.M., Seffen, K.A., Parks, G.T., and Clarkson, P.J. (1999). Efficient optimisation of structures using tabu search. In Toropov, V.V., ed., Engineering Design Optimization. Bradford: MCB University Press. 127–133.

    Google Scholar 

  • Corana, A., Marchesi, M., Martini, C., and Ridella, S. (1987). Minimizing multimodal functions of continuous variables with the simulated annealing algorithm. ACM Transactions on Mathematical Software 13: 262–280.

    Article  MathSciNet  MATH  Google Scholar 

  • Davis, L., ed., 1991. Handbook of Genetic Algorithms. New York: Van Nostrand Reinhold.

    Google Scholar 

  • Distefano, N. (1975). Dynamic programming and the optimization of two-point boundary value systems. Journal of Mathematical Analysis and Applications 52: 142–150.

    Article  MathSciNet  MATH  Google Scholar 

  • Distefano, N., and Rath, A. (1975). A dynamic programming approach to the optimization of elastic trusses. Journal of Optimization Theory and Applications 15: 13–26.

    Article  MathSciNet  MATH  Google Scholar 

  • Gero, J.S., Sheehan, P.J., and Becker, J.M. (1978). Building design using feedforward non-serial dynamic programming. Engineering Optimization 3: 183–192.

    Article  Google Scholar 

  • Gero, J.S., and Kaneshalingam, K. (1978). A method for the optimum design of traditional formwork. Engineering Optimization 3: 249–251.

    Article  Google Scholar 

  • Gill, P.E., Murray, W., and Wright, M.H. (1999). Practical Optimization. London: Academic Press. 401 p.

    Google Scholar 

  • Glass, C.A., and Potts, C.N. (1996). A comparison of local search methods for flow shop scheduling. Annals of Operations Research 63: 489–509.

    Article  MATH  Google Scholar 

  • Glover, F. (1977). Heuristic search–an approach to the nonconvex optimization problem. Decision Sci. 8: 156–166.

    Article  Google Scholar 

  • Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Reading: Addison-Wesley. Massachussets.

    Google Scholar 

  • Hajela, P., and Lee, E. (1995). Genetic algorithms in truss topological optimization. International Journal of Solids and Structures 32: 3341–3357.

    Article  MathSciNet  MATH  Google Scholar 

  • Hajela, P. (1999). Nongradient methods in multidisciplinary design optimization–status and potential. Journal of Aircraft 36: 255–265.

    Article  Google Scholar 

  • Hamada, M., Seguchi, Y., and Tada, Y. (1981). An optimal design of beam with variable cross section. Bulletin of the Japanese Society of Mechanical Engineers 24: 621–627.

    Article  Google Scholar 

  • Haupt, R.L., and Haupt, S.E. (1998). Practical Genetic Algorithms. New York: John Wiley. 177 p.

    MATH  Google Scholar 

  • Holland, J.H. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor: University of Michigan Press. Michigan.

    Google Scholar 

  • Howell, G.C., and Doyle, W.S. (1978). Dynamic programming and direct iteration for the optimum design of skeletal towers. Computers and Structures 9: 621–627.

    Article  MATH  Google Scholar 

  • Hu, N. (1992). Tabu search method with random moves for globally optimal design. International Journal for Numerical Methods in Engineering 35: 1055–1070.

    Article  ADS  Google Scholar 

  • Jendo, S., Marks, W., and Thierauf, G. (1985). Multicriteria optimization in optimum structural design. Large Scale Systems 9: 141–150.

    MATH  Google Scholar 

  • Jenkins, W.M. (1991). Towards structural optimization via genetic algorithm. Computers and Structures 40: 1321–1327.

    Article  MATH  Google Scholar 

  • Kincaid, R.K. (1990). Minimizing distortion and internal forces in truss structures by simulated annealing. In Proceedings of 31st AIAA/ASME/ASCE/AHS/ASC Structural Materials and Dynamics Conference, Long Beach: AIAA. USA. 327–333.

    Google Scholar 

  • Kincaid, R.K. (1991). Minimizing distortion in truss structures: a comparison of simulated annealing and tabu search. In Proceedings of 32nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Baltimore: AIAA. USA. 424–430.

    Google Scholar 

  • Kirkpatrick, S., Gelatt Jr, C.D., and Vecchi, M.P. (1983). Optimization by simulated annealing. Science 220: 671–680.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Kneppe, G., and Sattler, H.J. (1982). Modifikation des Boxschen Complex-Verfahrens. Zeitschrift fuer Angewandte Mathematik und Mechanik T 371–373.

    Google Scholar 

  • Laarhoven van, P.J.M., and Aarts, E.H.L. (1992). Simulated Annealing - Theory and Applications. Dordrecht: Kluwer Academic Publishers. 187 p.

    Google Scholar 

  • Leite, J.P.B., and Topping, B.H.V. (1999). Parallel simulated annealing for structural optimization. Computers and Structures 73: 545–564.

    Article  MATH  Google Scholar 

  • Li, Y.H., Richards, E.B., Jiang, Y.J., and Azarmi, N.A.S. (1996). Localised simulated annealing in constraint satisfaction and optimization. In Rayward-Smith, V.J., Osman, I.H., and Reeves, C.R., eds., Modern Heuristic Search Methods. Chichester: John Wiley. 27–39.

    Google Scholar 

  • Lin, C.Y., and Chen, W.T. (2000). Stochastic multistage algorithms for multimodal structural optimization. Computers and Structures 74: 233–241.

    Article  Google Scholar 

  • Lipson, S.L., and Gwin, L.B. (1977). The complex method applied to optimal truss configuration. Computers and Structures 7: 461–468.

    Article  Google Scholar 

  • Luchi, M.L., and Poggialini, A. (1980). An interactive optimization procedure applied to the design of gas turbine discs. Computers and Structures 11: 629–637.

    Article  MATH  Google Scholar 

  • Lundy, M., and Mees, A. (1986). Convergence of an annealing algorithm. Mathematical Programming 34: 111–124.

    Article  MathSciNet  MATH  Google Scholar 

  • Manoharan, S., and Shanmuganathan, S. (1999). A comparison of search mechanisms for structural optimization. Computers and Structures 73: 363–372.

    Article  MATH  Google Scholar 

  • May, S.A., and Balling, R.J. (1992). A filtered simulated annealing strategy for discrete optimization of a 3D steel frameworks. Structural Optimization 4: 142–148.

    Article  Google Scholar 

  • Nagendra, S., Jestin, D., Gurdal, Z., Haftka, R.T., and Watson, L.T. (1996). Improved genetic algorithm for the design of stiffened composite panels. Computers and Structures 58: 543–555.

    Article  MATH  Google Scholar 

  • Nelder, J.A., and Mead, R. (1965). A simplex method for function minimization. Computer Journal 7: 308–313.

    Article  MATH  Google Scholar 

  • Nemhauser, G.L. (1966). Introduction to Dynamic Programming. New York: John Wiley. 256 p.

    Google Scholar 

  • Odland, J. (1981). Theoretical and experimental buckling loads of imperfect spherical shell segments. Journal of Ship Research 25: 201–218.

    Google Scholar 

  • Osman, C., and Parent, P. (1982). Piecewise smooth dynamic programming application to a casing design for ultradeep drills. Engineering Optimization 5: 249–256.

    Article  Google Scholar 

  • Osman, I.H., and Laporte, G. (1996). Metaheuristics: A bibliography. Annals of Operations Research 63: 513–623.

    Article  MathSciNet  MATH  Google Scholar 

  • Palmer, A.C. (1968). Optimal structure design by dynamic programming. Proceedings of the American Society of Civil Engineers 94: 1887–1906.

    Google Scholar 

  • Palmer, A.C. (1969). Limit analysis of cylindrical shells by dynamic programming. International Journal of Solids and Structures 5: 289–302.

    Article  MATH  Google Scholar 

  • Palmer, A.C., and Sheppard, D.J. (1970). Optimizing the shape of pin jointed structures. Proceedings of the Institution of Civil Engineers 47: 363–376.

    Article  Google Scholar 

  • Parkinson, J.M., and Hutchinson, D. (1972). An investigation into the efficiency of variants on the simplex method. In Lootsma, F.A., ed., Numerical Methods for Non-linear Optimization. New York: Academic Press. 115–135.

    Google Scholar 

  • Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T. (1986). Numerical Recipes - The Art of Scientific Computing. Cambridge: Cambridge University Press. UK. 818 p.

    MATH  Google Scholar 

  • Raj, P.P., and Durrant, S.O. (1976). Optimum structural design by dynamic programming. Journal of the Structural Division, American Society of Civil Engineers 102: 1575–1589.

    Google Scholar 

  • Rao, S.S. (1984). Optimization - Theory and Applications. New Dehli: Wiley Eastern Limited. 747 p.

    MATH  Google Scholar 

  • Rayward-Smith, V.J., Osman, I.H., Reeves, C.R., and Smith, G.D., eds., (1996). Modern Heuristic Search Methods. Chichester: John Wiley. 294 p.

    MATH  Google Scholar 

  • Rechenberg, I. (1973). Evolution Strategy: Optimization of Technical Systems According to Biological Evolution. Stuttgart: Frommann-Holzboog.

    Google Scholar 

  • Reeves, C.R., ed., (1995). Modern Heuristic Techniques for Combinatorial Problems. London: McGraw-Hill. 320 p.

    Google Scholar 

  • Salama, M., Bruno, R., Chen, G.S., and Garba, J. (1990). Optimal placement of excitations and sensors by simulated annealing. In Recent Advances in Multidisciplinary Analysis and Optimization, NASA CP-3031, 1441–1458.

    Google Scholar 

  • Schmidt, H., and Krysik, R. (1991). Towards recommendations for shell stability design by means of numerically determined buckling loads. In Jullien, J.F., ed., Buckling of Shell Structures, on Land, in the Sea and in the Air. London New York: Elsevier Applied Science. 508–519.

    Google Scholar 

  • Schnack, E., and Sporl, U. (1986). A mechanical dynamic programming algorithm for structure optimization. International Jounal for Numerical Methods in Engineering 23: 1985–2004.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Shim, P.Y., and Manoochehri, S. (1997). Generating optimal configurations in structural design using simulated annealing. International Journal for Numerical Methods in Enginering 40: 1053–1069.

    Article  MATH  ADS  Google Scholar 

  • Shim, P.Y., and Manoochehri, S. (1999). A hybrid deterministic/stochastic optimization approach for the shape configuration design of structures. Structural Optimization 17: 113–129.

    Google Scholar 

  • Siarry, P., and Berthiau, G. (1997). Fitting of tabu search to optimize functions of continuous variables. International Journal for Numerical Methods in Engineering 40: 2449–2457.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Spendley, W., Hext, G.R., and Himsworth, F.R. (1962). Sequential application of simplex designs in optimisation and evolutionary operation. Technometrics 4: 441–461.

    Article  MathSciNet  MATH  Google Scholar 

  • Swann, W.H. (1974). Constrained optimization by direct search. In Gill, P.E., and Murray, W., eds., Numerical Methods for Constrained Optimization. New York: Academic Press. 191–268.

    Google Scholar 

  • Szewczyk, Z., and Hajela, P. (1993). Neural network approximations in a simulated annealing based optimal structural design. Structural Optimization 5: 159–165.

    Google Scholar 

  • Thevendran, V. (1982). Dynamic programming in minimum weight design of shells. International Journal for Numerical Methods in Engineering 18: 1349–1360.

    Article  MATH  ADS  Google Scholar 

  • Thevendran, V. (1984). Dynamic programming in minimum-weight design of axisymmetric plates. Journal of Optimization Theory and Applications 44: 689–700.

    Article  MathSciNet  MATH  Google Scholar 

  • Topping, B.H.V., Khan, A.I., and de Barros Leite, J.P. (1993). Topological design of truss structures using simulated annealing. In Topping, B.H.V., and Khan,. A.I., eds., Neural Networks and Combinatorial Optimization in Civil and Structural Engineering. Edinburgh: Civil-Comp Press. 151–165.

    Chapter  Google Scholar 

  • Tzan, S.R., and Pantelides, C.P. (1996). Annealing strategy for optimal structural design. Journal of Structural Engineering, Transactions of the American Society of Civil Engineers 122: 815–827.

    Google Scholar 

  • Vanderbilt, D., and Louie, S.G. (1984). A Monte Carlo simulated annealing approach to optimization over continuous variables. Journal of Computational Physics 56: 259–271.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Vanderplaats, G.N. (1984). Numerical Optimization Techniques for Engineering Design. New York: McGraw-Hill Book Company. 333 p.

    MATH  Google Scholar 

  • Vanderplaats, G.N. (1999). Structural design optimization status and direction. Journal of Aircraft 36: 11–20.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Wien

About this paper

Cite this paper

Blachut, J. (2001). Old and New Non-Gradient Methods in Engineering Optimization. In: Blachut, J., Eschenauer, H.A. (eds) Emerging Methods for Multidisciplinary Optimization. International Centre for Mechanical Sciences, vol 425. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2756-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2756-8_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83335-3

  • Online ISBN: 978-3-7091-2756-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics