Skip to main content

Multidisciplinary Optimization Procedure in Design Processes

— Basic Ideas, Aims, Scope, Concepts —

  • Conference paper
Emerging Methods for Multidisciplinary Optimization

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 425))

Abstract

An important goal of engineering activities is to improve existing and to develop novel technical designs, structural assemblies, and components. The “best-possible” or “optimal” structures / systems are the ones that correspond to the designer’s desired concepts, meeting at the same time the multidisciplinary requirements and/or specifications referring to manufacturing, assembling, operation, etc. In comparison with the “trial-and-error” approaches still used in the engineering environment and provided with considerable uncertainties, the determination of optimal solutions especially for large-scale and complex structures by means of continuously improved algorithms and strategies, so-called “emerging methods” is more reliable and efficient. These procedures will be a need in the design process in future, and they are already increasingly entering industrial practice. In the introductory chapter, three applications in Topology, Product and Process, and Robust Multicriteria Optimization are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abadie, J., and Carpentier, J., (1969). Generalization of the Wolfe Reduced Gradient Method to be Case of Nonlinear Constraints. In Fletcher, R.: Optimization, Academic Press, New York

    Google Scholar 

  • Adelman, H.M., and Haftka, T., (1984). Sensitivity Analysis for Discrete Structural Systems — A Survey, NASA-TM-86333

    Google Scholar 

  • Allaire, G., and Kohn, R.V., (1993). Optimal design for minimum weight and compliance in plane stress using extremal microstructures, Eur. J Mech., A/Solids, 12, No. 6: 839–878

    MathSciNet  MATH  Google Scholar 

  • Ashley, S., (1992). DARPA initiative in concurrent engineering, Mechanical Engineering, 54: 45–57

    Google Scholar 

  • Atrek, E., (1989). SHAPE: A Program for Shape Optimization of Continuum Structures, Proc. First Int. Conf.: Opti’89, Comp. Mechanics Publications, Springer, Berlin, 135–144

    Google Scholar 

  • Atrek, E., (1993). SHAPE: A Structural Shape Optimization Program. In Hörnlein, H., and Schittkowski, K. (eds.), Software Systems for Structural Optimization, Vol. 110 International Series of Numerical Mathematics, Birkhäuser, Basel, 229–249

    Google Scholar 

  • Atrek, E., and Agarwal, B., (1992). Shape Optimization of Structural Design. In Billingsley, K.R., Brown Ill., H.U., and Derohanes, E. (eds.), Scientific Excellence in Supercomputing — The IBM 1990 Contest Prize Papers, University of Georgia, Athens, GA, Baldw in Press

    Google Scholar 

  • Atrek, E., and Kodali, R., (1989). Optimum Design of Continuum Structures with SHAPE. In Prasad, B. (ed.), CAD/CAM Robotics and Factories of the Future, Vol. 2, Proc. of the 3rd International Conference CARS and FOF ‘88, Springer, Berlin, 11–15

    Google Scholar 

  • Banichuk, N.V., (1993). Shape Design Sensitivity Analysis for Optimization Problems with Local and Global Functionals, Mech. Struct., and Mach., 21 (3): 375–397

    Article  MathSciNet  Google Scholar 

  • Barthelemy, J.F.M., and Haftka, R.T., (1993), Approximation concepts for optimum structural design — a review, J. Structural Optimization, Vol. 5: 129–144

    Article  Google Scholar 

  • Beer, R., (1996). Multidisziplinäre Optimierung von zylinderförmigen Gußbauteilen mit mehreren Zielvorstellungen, Dissertation Universität-GH Siegen, TIM-Forschungsbericht Nr. T11–08. 96

    Google Scholar 

  • Beer, R., Eschenauer, H.A., Lautenschlager, U., and Hillmer, P., (1994). On the Modeling and Optimization of a Pressure Gas Insulation Component – A Multidisciplinary Optimization Task, 5th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Panama City, Sept. 7–9, 1994, A Collection of Technical Papers, Part 2, American Institute of Aeronautics and Astronautics AIAA, ISBN 1–56347–097–7, 1994, 423 – 433

    Google Scholar 

  • Bendsee, M.P., (1994). Methods for the Optimization of Structural Topology, Shape and Material, Springer, Berlin

    Google Scholar 

  • Bendsee, M.P., and Kikuchi, N., (1988). Generating optimal topologies in structural design using a homogenization method, Corn. Meth. Appl. Mech. Eng. 71: 197–224

    Article  Google Scholar 

  • Bendsee, M.P., Diaz, A., and Kikuchi, N., (1993). Topology and Generalized Layout Optimization of Elastic Structures. In Bendsee, M.P., and Mota Soraes, C.A. (eds.), Topology Design of Structures, Kluwer Academic Publishers, Dordrecht, 159–205

    Chapter  Google Scholar 

  • Berchtold, G., and Klenner, J., (1992). The integrated design and manufacturing of composite structures for aircraft using an advanced tape laying technology, DGLR-Jahrestagung, Bremen/Germany, MBBBericht S-PUB-491

    Google Scholar 

  • Bloebaum, C.L., Hajela, P., and Sobieszczanski-Sobieski, J., (1990). Nonhierarchic system deconrtposition in structural optimization, Proc. Third Air Force/NASA Symposium on Recent Advances in Multidisciplinary Analysis and Optimization, San Francisco, CA, Sept. 24–26, 1990

    Google Scholar 

  • Bourgat, J.F., (1973). Numerical Experiments of the Homogenisation Method for Operators with Periodic Coefficients, Lecture Notes in Mathematics 704, Springer, Berlin, 330–356

    Google Scholar 

  • Box, G., Hunter, W., and Hunter, J., (1978). Statistics for Experimenters, Wiley Inc., New York

    MATH  Google Scholar 

  • Bremicker, M., (1989). Dekompositionsstrategie in Anwendung auf Probleme der Gestaltsoptimierung, Dissertation Universität-GH Siegen. VDI-Fortschrittsbericht, Reihe 1, Nr. 173, VDI, Düsseldorf

    Google Scholar 

  • Bremicker, M., and Eschenauer, H.A., (1989). Applications of a decomposition technique for treating a shape optimization problem. In Advances in Design Automation, Vol. II, ASME Publ. DE-Vol. 19–2, 1–6

    Google Scholar 

  • Courant, R., and Hilbert, D., (1968). Methods of Mathematical Physics I, Interscience Publishers Inc., New York

    Google Scholar 

  • Dollyhigh, S.M., and Sobieszczanski-Sobieski J., (1990). Recent experience with multidisciplinary analysis and optimization in advanced aircraft design, Proceedings of the NASA Symposium on Multidisciplinary Analysis and Optimization, 404–411

    Google Scholar 

  • Eifler, D., Löhe, D., and Scholtes, B., (1991). Residual stresses and fatigue of metallic materials. In Hauk, V., Hougardy, H.P., and Macherauch, E. (eds.), Residual stresses - measurement, calculation, evaluation, DGM Informationsgesellschaft, Oberursel

    Google Scholar 

  • Erler, J., (1937). Studies of casting stresses in chilled iron rolls, The Iron Age. 45–51, 81

    Google Scholar 

  • Eschenauer, H., Koski, J., and Osyczka, A. (1990). Multicriteria Design Optimization. Procedures and Applications, Springer, Berlin, Heidelberg

    Google Scholar 

  • Eschenauer, H.A., (1989), The ‘Three Columns’ for Treating Problems in Optimum Structural Design. In Bergmann, H.W. (ed.). Optimization: Methods and Applications, Possibilities and Limitations, Springer, Berlin, Heidelberg, New York, 1–21

    Chapter  Google Scholar 

  • Eschenauer, H.A., (1992). Multidisciplinary Modeling and Optimization in Design Processes, ZAMM - Z. angew. Math. Mech. 72, (6): T428 - T447

    MathSciNet  Google Scholar 

  • Eschenauer, H.A., (1998). Development of Highly Precise Radio Telescopes — a typical Multidisciplinary Problem. In Belegundu, A.D., and Mistree, F. (eds.), Optimization in Industry — 1997, ASME, New York, 13–30

    Google Scholar 

  • Eschenauer, H.A., and Weinert, M., (1993). Structural techniques as a mathematical tool for finding optimal shapes of complex shell structures. In Gianessi, F. (ed.), Non-Smooth Optimization Methods and Applications. Gordon and Breach Science Publishers, Switzerland

    Google Scholar 

  • Eschenauer, H.A., and Schumacher, A., (1993a). Bubble Method: A special strategy for finding best possible initial designs, Proc. of the 1993 ASME Design Technical Conferences, 19th Design Automation Conference, Vol 65–2, 437–443

    Google Scholar 

  • Eschenauer, H.A., and Schumacher, A., (1993b). Possibilities of Applying Various Procedures of Topology Optimization to Components subject to Mechanical Loads, ZAMM— Z. angew. Math. Mech., 73: T392 - T394

    MATH  Google Scholar 

  • Eschenauer, H.A., and Schumacher, A., (1997). Topology and shape optimization procedures using hole positioning criteria — theory and applications. In Rozvany, G.I.N. (ed.), Topology Optimization in Structural Mechanics, Volume 374 of CISM Courses and Lectures, Springer, Wien

    Google Scholar 

  • Eschenauer, H.A., and Weinert, M., (1994). Optimal layouts of complex shell structures by means of decomposition techniques, Proc. of 4th AIAA/USAF/NASA/OAI Symp. on Multidisciplinary Analysis and Optimization, Cleveland, OH. AIAA 1994, 999–1007

    Google Scholar 

  • Eschenauer, H.A., Kobelev, V.V., and Schumacher, A., (1994). Bubble method for topology and shape optimization of structures, J. Struct. Opt. 8: 42–51

    Article  Google Scholar 

  • Eschenauer, H.A., Geilen, J., and Wahl, H.J., (1993). SAPOP–An Optimization Procedure for Multicriteria Structural Design. In Schittkowski, K., and Hörnlein, H. (eds.), Software Systems for Optimization, Birkhäuser, Basel, ISNM-Volume, 207–228

    Chapter  Google Scholar 

  • Eschenauer, H.A., and Beer, R., (1998). Multidisciplinary optimization of cast components regarding process characteristics, J. Structural Optimization, 16: 212–225

    Google Scholar 

  • Eschenauer, H.A., Mattheck, C., and Olhoff, N., (eds.) (1991). Engineering Optimization in Design Processes, Lecture Notes in Engineering, Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Etman, P., (1997). Optimization of Multibody Systems using Approximation Concepts, Ph.D.-Thesis, Universiteitsdrukkerij TU Eindhoven

    Google Scholar 

  • Fleury, C., and Schmit, L.A., (1980). Dual Methods and Approximation Concepts in Structural Synthesis, NASA Contractor Report 3226

    Google Scholar 

  • Geißendörfer, K., (1992). CALTA-GII development for an integrated design and manufacturing system in aircraft industry, ECU European CATIA Users Association, Annual Conference, Mont Pellier

    Google Scholar 

  • Guan, J., and Sahm, P.R., (1992). Numerische Untersuchung der thermischen Spannungen in realen 3D-Gußbauteilen, Giesserei 79: 318–322

    Google Scholar 

  • Haug, E.J., and Arora, J.S., (1978). Design Sensitivity Analysis of Elastic Mechanical Systems, Com. Meth. Appl. Mech. Eng. 15: 35–62

    Article  MATH  Google Scholar 

  • Haug, E.J., Choi, K.K., and Komkov, V., (1986). Design Sensitivity Analysis of Structural Systems, Academic Press Inc., Orlando

    MATH  Google Scholar 

  • Kneppe, G., (1986). Direkte Lösungsstrategien zur Gestaltsoptimierung von Flächentragwerken, Dissertation, Universität-GH Siegen, VDI-Fortschrittsbericht, Reihe 1, Nr. 135, VDI, Düsseldorf

    Google Scholar 

  • Lautenschlager, U., Eschenauer, H.A., and Mistree, F., (1999). Design-of-Experiments Methods and their Application to Robust Multicriteria Optimization Problems, ZAMM Journal Applied Mathematics and Mechanics, Vol. 79, Supplement l: GAMM 98 Annual Meeting, Minisymposia

    Google Scholar 

  • Lawson, M., and Karandikar, H.M., (1994). A Survey of Concurrent Engineering, J. Concurrent Engineering — Research and Applications, Vol 2 (1): 1–6

    Article  Google Scholar 

  • Mack, W., and Gamer, U., (1988). Zur Berechnung der Wärmespannungen beim Abkühlen thermisch beanspruchter elastisch-plastischer Bauteile, Forschung im Ingenieurwesen 54: 48–52

    Article  Google Scholar 

  • Megahed, M.M., (1990), Elastic-plastic behaviour of a thick-walled tube with general nonlinear hardening properties, Int. J. Mech. Sci., 32: 551–563

    Article  Google Scholar 

  • Montgomery, D., (1991). Design and Analysis of Experiments, Third Ed., John Wiley and Sons, New York Papalambros, P.Y., and Chirehdast, M., (1990), An integrated environment for structural configuration designs, J. Eng. Design, I (1): 73–96

    Google Scholar 

  • Parkinson, A., and Wilson, M., (1986). Development of a Hybrid SQP-GRG Algorithm for Constrained Nonlinear Programming, Proceedings of the ASME Design Engineering Technical Conference, Columbus, Ohio, Oct. 5–8, 1986

    Google Scholar 

  • Parsaei, H.R., and Sullivan, W.G., (eds.) (1993). Concurrent Engineering — Contemporary Issues and Modern Design Tools, Chapman and Hall, London, Glasgow, New York

    Google Scholar 

  • Powell, M.J.D., (1982). VMCWD: A FORTRAN Subroutine for Constrained Optimization, University of Cambridge, Report DANTP 1982/NA4

    Google Scholar 

  • Reinhardt, H.J., Seiffarth, F., and Hào, D.N., (1993). Approximate Solutions of Ill-posed Cauchy Problems for Parabolic Differential Equations. In Anger, G. (ed.), Inverse Problems: Principles and Applications in Geophysics, Technology and Medicine, 284–298

    Google Scholar 

  • Roux, W.J., Stander, N., and Haftka, R.T., (1996). Response Surface Approximations for Structural Optimization, Proc. Sixth AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Bellevue, WA, 565–578

    Google Scholar 

  • Sahm, P.R., and Hansen, P.N., (1984). Numerical simulation and modeling of casting and solidification processes for foundry and cast-house, CIATF, Zurich/Switzerland

    Google Scholar 

  • Schimöller, H., (1990). Analytische Behandlung von Eigenspannungszustanden auf der Grundlage der Elastizitätstheorie, VDI-Fortschrittsberichte, Reihe 18: Mechanik/Bruchmechanik, 88

    Google Scholar 

  • Schoofs, A.J.G., (1987). Experimental Design and Structural Optimization, Ph.D.-thesis, Febodruk, Enschede/The Netherlands

    Google Scholar 

  • Schoofs, A.J.G., Klink, M.B.M., and van Campen, D.H.. (1992). Approximation of structural optimization problems by means of designed numerical experiments, J. Structural Optimization, Vol. 4: 206–212

    Article  Google Scholar 

  • Schumacher, A., (1995). Topologieoptimierung von Bauteilstrukturen unter Verwendung von Lochpositionierungskriterien, Ph.D.-Thesis, University of Siegen, TIM-Report T09–11. 95

    Google Scholar 

  • Schuhmacher, G., (1995). Multidisziplinäre, fertigungsgerechte Optimierung von Faserverbund-Flächentragwerken, Uni-GH Siegen: Dissertation, TIM-Bericht Nr. T07–03. 95

    Google Scholar 

  • Sjöström, S., (1983). Berechnung der Abschreckeigenspannungen in Stahl. In Macherauch, E., and Hauk, V. (eds.), Eigenspannungen. Entstehung–Messung–Bewertung, Vol. 1. DGM Informationsgesellschaft Oberursel, 155–189

    Google Scholar 

  • Sluzalek, A., (1992). Introduction to nonlinear thermodynamics, theory and finite element solutions, Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Sobieszczanski-Sobieski, J., (1988). Optimization by decomposition: a step from hierarchic to non-hierarchic systems. In Proc. Second NASA/Air Force Symposium on Recent Advances in Multidisciplinary Analysis and Optimization, Hampton, VA, Sept. 28–30, 1988

    Google Scholar 

  • Sobieszczanski-Sobieski, J., (1989). Multidisciplinary optimization for engineering systems. In Bergmann, H.W. (ed.), Optimization: Methods and Applications, Possibilities and Limitations, Springer, Berlin, Heidelberg, New York, 42–62

    Chapter  Google Scholar 

  • Stadler, W., (1988). Multicriteria Optimization in Engineering and in the Sciences, Plenum Press, New York, London

    Google Scholar 

  • Svanberg, K., (1987). The method of moving asymptotes — A new method for structural optimization, International Journal for Numerical Methods in Engineering 24: 259–373

    Article  MathSciNet  Google Scholar 

  • Taguchi, G., (1986). Introduction to Quality Engineering: Designing Quality into Products and Processes, Kraus International Publications, White Plains, N.Y

    Google Scholar 

  • Upadhya, G., Banerjee, D.K., Stefanescu, D.M., and Hill, J.L., (1990). Heat transfer-solidification of structural transitions: chill formation in grey iron, AFS Trans. 90: 699–707

    Google Scholar 

  • Vanderplaats, G,N., Yang, Y.J., and Kim, D.S., (1990). Sequential linearization method for multilevel optimization, AIAA J. 28: 290–295

    Article  ADS  Google Scholar 

  • van Houten, M.H., (1988). Function Approximation Concepts for Multidisciplinary Design Optimization, Ph.D.-Thesis, Universiteitsdrukkerij TU Eindhoven

    Google Scholar 

  • VDI-Guideline 2235, ( 1987 ). Wirtschaftliche Entscheidungen beim Konstruieren (Economic Decisions in Design Processes). VDI, Düsseldorf

    Google Scholar 

  • Weck, M., Du Maire, E., and Vonderhagen, H., (1992). Optimierung von Gussbauteilen im Werkzeugmaschinenbau, Giesserei 79: 11–20

    Google Scholar 

  • Wiese, J.W., and Dantzig, J.A., (1988). Modeling stress development in grey iron castings. In Giamei, A.F., Abbaschian, G.J., and Bayuzick, R.J. (eds.), Solidification processing of eutectic alloys. The Metallurgical Society, 163–174

    Google Scholar 

  • Wolfersdorf, (1994). Inverse und schlecht gestellte Probleme, Akademie-Verlag, Berlin

    MATH  Google Scholar 

  • Yoshimura, M., and Takeuchi, A., (1994), Concurrent Optimization of Product Design and Manufacturing on Information of User’s Needs, J. Concurrent Engineering — Research and Applications, Vol 2 (1): 33–44

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Wien

About this paper

Cite this paper

Eschenauer, H.A. (2001). Multidisciplinary Optimization Procedure in Design Processes. In: Blachut, J., Eschenauer, H.A. (eds) Emerging Methods for Multidisciplinary Optimization. International Centre for Mechanical Sciences, vol 425. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2756-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2756-8_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83335-3

  • Online ISBN: 978-3-7091-2756-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics