Skip to main content

Bi-Stable Structures

  • Chapter
Deployable Structures

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 412))

Abstract

Many deployable structures contain bi-stable features. For example, bi-stable latching elements are often used to freeze a mechanism in a particular configuration: the latch snaps when the structure reaches its deployed configuration and no further motion is possible. This chapter will show that it is possible to design complete deployable structures that are bi-stable: although much less common, this approach may lead to a future generation of structures with exciting new capabilities. We begin by explaining the concept of bi-stable deployable structures using a simple structure, and then move on to a more challenging application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Avery, W.B. (1994) Visilam 3.1: A laminate analysis spreadsheet, Boeing Corporation, Seattle.

    Google Scholar 

  • Calladine, C. R. (1983) Theory of Shell Structures, Cambridge University Press, Cambridge.

    Book  MATH  Google Scholar 

  • Daton-Lovett, A. (1996) An extendible member,Patent Cooperation Treaty application PCT/-GB97/00839.

    Google Scholar 

  • Guest, S. D. and Pellegrino, S. (1994a). The folding of triangulated cylinders, Part II: the folding process. ASME Journal of Applied Mechanics, 61: 778–783.

    Article  Google Scholar 

  • Guest, S. D. and Pellegrino, S. (1994b). The folding of triangulated cylinders, Part I: geometric considerations. ASME Journal of Applied Mechanics, 61: 773–777.

    Article  MATH  Google Scholar 

  • Hull, D., & Clyne, T.W. (1996) An Introduction to Composite Materials, second edition, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Hyer, M. W. (1981) Some observations on the cured shape of thin unsymmetric laminates, Journal of Composite Materials, 15: 175–194.

    Article  Google Scholar 

  • Hyer, M.W. (1998) Stress Analysis of Fiber-Reinforced Composite Materials, WCB/ McGraw-Hill, Boston.

    Google Scholar 

  • Mansfield, E.H. (1989) The bending and stretching of plates, second edition, Cambridge University Press, Cambridge.

    Book  MATH  Google Scholar 

  • Rimrott, F.P.J. (1965) Storable tubular extendible member: a unique machine element, Machine Design, 37: 156–163.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Wien

About this chapter

Cite this chapter

Pellegrino, S. (2001). Bi-Stable Structures. In: Pellegrino, S. (eds) Deployable Structures. International Centre for Mechanical Sciences, vol 412. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2584-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2584-7_6

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83685-9

  • Online ISBN: 978-3-7091-2584-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics