Skip to main content

Elastic Folding of Shell Structures

  • Chapter
Deployable Structures

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 412))

Abstract

The current trend in the aerospace industry is towards deployable structures that are simpler, and hence cheaper and more reliable. Therefore, structures that require movable joints are being replaced by flexible structures that can be folded elastically. Thin shell structures are the ideal choice for this because, provided that folding does not involve a significant amount of mid-surface stretching, the stresses due to bending can be made as small as required to avoid yielding of the material, by choosing a sufficiently small thickness for the shell. Two examples of this “new” type of deployable structures will be discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anon. (1994) Hughes Graphite Antennas installed on MSAT-2 Craft, Space News, 14–20 November, p. 13.

    Google Scholar 

  • Calladine, C. R. (1983) Theory of shell structures. Cambridge University Press.

    Google Scholar 

  • Calladine, C. R. (1988) The theory of thin shell structures 1888–1988. Proceedings of the Institution of Mechanical Engineers, 202: 1–9.

    Google Scholar 

  • Chater, E. and Hutchinson, J. W. (1984) On the propagation of bulges and buckles. Journal of Applied Mechanics, 51: 269–277.

    Article  Google Scholar 

  • Chater, E., Hutchinson, J. W.. and Neale, K.W. (1983) Buckle propagation on a beam on a nonlinear elastic foundation. In Collapse (ed. J.M.T. Thompson and G.W. Hunt ), 31–41. Cambridge: Cambridge University Press.

    Google Scholar 

  • Fischer, A. (1995) Bending instabilities of thin-walled transversely curved metallic springs. Cambridge University Engineering Department Report CUED/D-STRUCT/TR 154.

    Google Scholar 

  • Guest, S. D. and Pellegrino, S. (1996) A new concept for solid surface deployable antennas, Acta Astronautica, 38: 103–113.

    Article  Google Scholar 

  • Hibbit, Karlsson and Sorensen (1994) ABAQUS Version 5.4. Pawtucket: Hibbit, Karlsson and Sorensen Ltd.

    Google Scholar 

  • Hooke, R. and Jeeves, T.A. (1961) “Direct search” solution of numerical and statistical problems, Journal of the Association for Computing Machinery, 8: 212–229.

    Google Scholar 

  • Kyriakides, S. (1994) Propagating instabilities in structures. In Advances in Applied Mechanics (ed. J. W. Hutchinson and T. Y. Wu ), 67–189. Boston: Academic Press.

    Google Scholar 

  • Mansfield, E. H. (1973) Large-deflexion torsion and flexure of initially curved strips. Proceedings of the Royal Society of London, Series A, 334: 279–298.

    Article  MATH  Google Scholar 

  • Panovko, Y. G. and Gubanova, I. I. (1965) Stabilities and oscillations of elastic systems: paradoxes, fallacies and new concepts, New York: Consultants Bureau.

    Google Scholar 

  • Riks, E. (1972) The application of Newton’s method to the problem of elastic stability. Journal of Applied Mechanics, 39: 1060–1066.

    Article  MATH  Google Scholar 

  • Rimrott, F. P. J. (1970) Querschnittsverformung bei Torsion offener Profile. ZeitscIir ftfur angewandte Mathematik und Mechanik, 50: 775–778.

    Article  Google Scholar 

  • Seffen, K. A. and Pellegrino, S. (1999). Deployment dynamics of tape springs. Proceedings of the Royal Society of London, Series A, 455: 1003–1048.

    Article  MATH  MathSciNet  Google Scholar 

  • Tibbalds, B., Guest, S. D. and Pellegrino, S. (1998). Folding concept for flexible surface reflectors. In Proc. 39th AIAAASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference,20–23 April, 1998 Long Beach, CA, 1193–1201. AIAA-98–1836.

    Google Scholar 

  • Wuest, W. (1954) Einige Anvendungen der Theorie der Zylinderschale. Zeitschrift fur angewandte Mathematik und Mechanik; 34: 444–454.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Wien

About this chapter

Cite this chapter

Pellegrino, S. (2001). Elastic Folding of Shell Structures. In: Pellegrino, S. (eds) Deployable Structures. International Centre for Mechanical Sciences, vol 412. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2584-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2584-7_5

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83685-9

  • Online ISBN: 978-3-7091-2584-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics