Skip to main content

Finite Element Simulation of Deployable Structures

  • Chapter
Deployable Structures

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 412))

Abstract

The purpose of this chapter is to describe a general methodology for efficient and general computer simulation of deployable mechanical systems.

Based on the forthcoming book (Géradin and Cardona, 2000).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • A. Cardona and M. Géradin and D.B. Doan. (1991). Rigid and flexible joint modelling in multibody dynamics using finite elements. Comp. Meth. in Appl. Mech. and Eng. 89:395–418

    Article  Google Scholar 

  • Agrawal, O., and Shabana, A. (1986). Application of defotmable-body mean axis to flexible multibody system dynamics. Comp. Meth. in Appl. Mech. and Eng. 56:217–245.

    Article  MATH  Google Scholar 

  • Angeles, J. (1982). Spatial Kinematic Chains. Springer-Verlag.

    Google Scholar 

  • Angeles, J. (1988). Rational Kinematics. Springer-Verlag.

    Google Scholar 

  • Asada, H., and Slotine, J. (1986). Robot Analysis and Control. John Wiley & Sons.

    Google Scholar 

  • Bathe, K., and Bolourchi, S. (1979). Large displacement analysis of three-dimensional beam structures. Int. Jnl. Num. Meth. Engng. 14: 961–986.

    Article  MATH  Google Scholar 

  • Bottema, O., and Roth, B. (1979). Theoretical Kinematics. Holland: North-Holland Publishing Co.

    MATH  Google Scholar 

  • Cardona, A., and Géradin, M. (1989). Time integration of the equations of motion in mechanism analysis. Computers and Structures 33: 801–820.

    Article  MATH  Google Scholar 

  • Cardona, A., and Géradin, M. (1991). Modelling of superelements in mechanism analysis. Int. Jnl. Num. Meth. Engng. 32 (8): 1565–1594.

    Article  MATH  Google Scholar 

  • Cardona, A., and Géradin, M. (1993). Kinematic and dynamic analysis of mechanisms with cams. Comp. Meth. in Appl. Mech. and Eng. (103): 115–134. (Contribution to Besseling anniversary issue).

    Google Scholar 

  • Cardona, A., and Géradin, M. (1994). Numerical integration of second-order differential-algebraic systems in flexible mechanism dynamics. In Pereira, M. S., and Ambrosio, J., eds., Computer-Aided Analysis of Rigid and Flexible Mechanical Systems. NATO ASI series, vol. E-268.

    Google Scholar 

  • Chedmail, P. (1990). Synthèse de robots et de sites robotisés - Modélisation de robots souples. Ph.D. Dissertation, Thèse de Doctorat d’Etat - mention Sciences, Ecole Centrale de Nantes.

    Google Scholar 

  • Craig, R., and Bampton, M. (1968). Coupling of substructures for dynamic analysis. AIAA Jnl 6 (7): 1313–1319.

    Article  MATH  Google Scholar 

  • Craig, J. (1986). Introduction to Robotics - Mechanics and Control. Addison Wesley.

    Google Scholar 

  • Ebner, A., and Uccifero, J. (1972). A theoretical and numerical comparison of elastic nonlinear finite element methods. Comp. Meth. in Appl. Mech. and Eng. 2:1043–1061.

    Google Scholar 

  • Euler, L. (1776). Nova methodus motum corporum rigidorum determinandi. Opera Oninia 2 (9): 99–125.

    Google Scholar 

  • Fraeijs de Veubeke, B. (1972). A new variational principle for finite elastic displacements. Int. Jnl. Eng. Sci. 10: 745–763.

    Article  MATH  MathSciNet  Google Scholar 

  • Garcia de Jalon, J., and Bayo, E. (1994). Kinematic and Dynamic Simulation of Multibody Systems - The Real Challenge. Springer Verlag.

    Google Scholar 

  • Géradin, M., and Cardona, A. (1991). Substructuring techniques in flexible multibody systems. In Eight VPI & SII Symposium on Dynamics and Control of Large Space Structures.

    Google Scholar 

  • Géradin, M., and Cardona, A. (2000). Flexible Multibody Dynamics: A Finite Element Approach. John Wiley & Sons. to appear.

    Google Scholar 

  • Géradin, M., and Rixen, D. (1994). Mechanical Vibrations - Theory and Application to Structural Dynamics. J. Wiley.

    Google Scholar 

  • Géradin, M., Hogge, M., and Idelsohn, S. (1983a). Implicit finite element method. In Belytschko, T., and Hughes, T., eds., Computational Methods fhr Transient analysis, 417–471.

    Google Scholar 

  • Géradin, M., Robert, G., and Bernardin, C. (1983b). Dynamic modelling of manipulators with flexible members. In A., D., and Géradin, M., eds., Advanced Software in Robotics.

    Google Scholar 

  • Géradin, M. (1994). Energy conserving time integration for multibody dynamics - application to top motion. In Mecanica C’ontputacional, Volume 14, 573–586. Associacion Argentina de Mecanica Computacional.

    Google Scholar 

  • Goldstein, H. (1964). Classical Mechanics. Addison-Wesley Publishing Co, Inc.

    Google Scholar 

  • Hartenberg, R., and Denavit, I. (1964). Kinematic Synthesis of Linkages. McGraw-Hill.

    Google Scholar 

  • Haug, E. (1989). Computer-Aided Kinematics and Dynamics of Mechanical Systems, volume I. Allyn and Bacon.

    Google Scholar 

  • Hilber, H., Hughes, T., and Taylor, R. (1977). Improved numerical dissipation for time integration algorithms in structural dynamics. Earthquake Engineering and Structural Dynamics 5: 283–292.

    Article  Google Scholar 

  • Hiller, M., and Kecskeméthy, A. (1994). Dynamics of multibody systems with minimal coordinates. In Pereira, M. S., and Ambrosio, J., eds., Computer-Aided Analysis of Rigid and Flexible Mechanical Systems, 61–100. NATO ASI series, vol. E-268.

    Google Scholar 

  • Hiller, M. (1992). Computer-aided kinematics and dynamics of multibody systems with application in vehicle dynamics. Technical report, Universität - GH- Duisburg, Fachgebiet Mechatronik.

    Google Scholar 

  • Hughes, T. (1987). The Finite Element Method - Linear Static and Dynamic Finite Element Analysis. Prentice Hall Inc., New Jersey.

    MATH  Google Scholar 

  • Lur’é, L. (1968). Mécanique Analytique (tomes 1 et 2). Librairie Universitaire. (translated from Russian).

    Google Scholar 

  • Meirovitch, L. (1970). Methods of Analytical Dynamics. Mc Graw Hill.

    Google Scholar 

  • Newmark, N. (1959). A method of computation for structural dynamics. Jnl. Eng. Mech. Div. ASCE 85 (EM3), Proc. Paper 2094: 67–94.

    Google Scholar 

  • Nikravesh, P. (1988). Computer-Aided Analysis of Mechanical Systems. Prentice-Hall International, Inc.

    Google Scholar 

  • Orlandea, N., Chace, M., and Calahan, D. (1977). A sparsity oriented approach to the dynamic analysis and design of mechanical systems, parts I and II. ASME Journal of Engineering for Industry 99: 773–784.

    Article  Google Scholar 

  • Paul, R. (1981). Robot Manipulators: Mathematics, Programming, and Control. MIT Press.

    Google Scholar 

  • Rixen, D., Thonon, C., and Géradin, M. (1996). Impedance and admittance of continuous systems and comparison betwen discrete and continuous models. In ESA International Workshop on Advanced Mathematical Methods in the Dynamics of Flexible Bodies.

    Google Scholar 

  • Shabana, A., and Wehage, R. (1983). A coordinate reduction technique for dynamic analysis of spatial substructures with large angular rotations. Journal of Structures and Machines 11: 401–431.

    Google Scholar 

  • Shabana, A. (1985). Substructure synthesis methods for dynamic analysis of multi-body systems. Computers and Structures 20: 737–744.

    Article  MATH  Google Scholar 

  • Shabana, A. (1989). Dynamics of Multibody Systems. John Wiley & Sons.

    Google Scholar 

  • Shabana, A. (1997). Flexible multibody dynamics: Review of past and recent developments. Multibody System Dynamics 1: 189–222.

    Article  MATH  MathSciNet  Google Scholar 

  • Simo, J., and Vu-Quoc, L. (1986). A three-dimensional finite strain rod model, part II: Computer aspects. Comp. Meth. in Appl. Mech. and Eng. 58:79–116.

    Google Scholar 

  • Walrapp, O. (1991). Linearized flexible multibody dynamics including geometric stiffening effects. 19: 385–409.

    Google Scholar 

  • Whittaker, E. (1965). A Treatise on the Analytical Dynamics of Particles and Rigid Bodies. Cambridge University Press. (fourth edition).

    Google Scholar 

  • Wittenburg, J. (1977). Dynamics of Systems of Rigid Bodies. Stuttgart: Teubner.

    Book  MATH  Google Scholar 

  • Wu, S., and Haug, E. (1988). Geometric nonlinear substructuring for dynamics of flexible mechanical systems. Int. Jnl. Num. Meth. Engng. 26: 2211–2226.

    Article  MATH  Google Scholar 

  • Yoo, W., and Haug, E. (1986a). Dynamics of articulated structures. part I. theory. Journal of Structures and Machines 14: 105–126.

    Google Scholar 

  • Yoo, W., and Haug, E. (1986b). Dynamics of articulated structures. part II. computer implementation and applications. Journal of Structures and Machines 14: 177–189.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Wien

About this chapter

Cite this chapter

Géradin, M. (2001). Finite Element Simulation of Deployable Structures. In: Pellegrino, S. (eds) Deployable Structures. International Centre for Mechanical Sciences, vol 412. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2584-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2584-7_12

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83685-9

  • Online ISBN: 978-3-7091-2584-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics