Skip to main content

Deployable Structures in Engineering

  • Chapter
Deployable Structures

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 412))

Abstract

In this chapter we consider a type of transformable structures, capable of executing large configuration changes in an autonomous way. In most cases, their configuration changes between a compact, packaged state and a large, deployed state: the transformation from the former to the latter state is called deployment. The reverse transformation is called retraction.

Based on a chapter of the forthcoming book “Structural Concepts” by K. Miura and S. Pellegrino.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Agrawal, P.K., Anderson, M.S., and Card, M.F. (1981), Preliminary design of flat reflectors with flat facets, IEEE Transactions, Vol. AP-29, No 4.

    Google Scholar 

  • Aguirre, M., Bureo, R., Fuentes, M. and Rivacoba, J. (1985). The collapsible tube mast (CTM). In Proc. Second European Space Mechanisms and Tribology Symposium,Meersburg, Germany 9–11 October, 1985 pp 75–81. ESA SP-231.

    Google Scholar 

  • Calladine, C.R. (1988). The theory of thin shell structures 1888–1988. Proceedings of the Institution of Mechanical Engineers, 202: 1–9.

    Google Scholar 

  • Crawford, R.N. (1971). Strength and efficiency of deployable booms for space applications. In Proc. AAS/AIAA Variable Geometry and Expandable Structures Conference, 21–23 April 1971, AIAA Paper 71–396.

    Google Scholar 

  • de Kam, J. (1986). EURECA application of the RARA solar array. In Proc. 5th European Symposium Photovoltaic Generators in Space,Scheveningen, The Netherlands, 30 September-2 October 1986 pp 105–114. ESA-SP-267.

    Google Scholar 

  • Elder, D.C. (1995). Out from behind the eight-ball: a history of project Echo, Vol. 16, American Astronautical Society, San Diego, CA.

    Google Scholar 

  • Freeland, R.E., Bilyeu, G.D., Veal, G.R., Steiner, M.D. and Carson, D.E. (1997). Large inflatable deployable antenna flight experiment results. In Proc. 48th International Astronautical Congress,October 6–10, 1997, Turin, Italy, IAF-97–1301.

    Google Scholar 

  • Gertsma, L.W., Dunn, J.H. and Kempke, E.E. (1965). Evaluation of one type of foldable tube. NASA Lewis Research Center, Cleveland, Ohio, NASA TM-X-1187.

    Google Scholar 

  • Guest, S.D. and Pellegrino, S. (1996). A new concept for solid surface deployable antennas. Acta Astronautica, 38: 103–113.

    Article  Google Scholar 

  • Hoberman, C. (1990). Reversibly expandable doubly-curved truss structure,USA Patent 5234727.

    Google Scholar 

  • Hoberman, C. (1991). Radial expansion/retraction truss structures,USA Patent 5024031.

    Google Scholar 

  • IASS (1996). Structural Design of Retractable Roof Structures (Draft 3). International Association for Shells and Space Structures, Madrid.

    Google Scholar 

  • Love, A.E.H. (1944). A treatise on the mathematical theory of elasticity. Fourth Edition, Dover Publications, New York.

    MATH  Google Scholar 

  • MacNaughton, J.D., Weyman, H.N. and Groskopfs, E. (1967). The Bi-stem - A new technique in unfurlable structures. In Proc. Second Aerospace Mechanisms Symposium,University of Santa Clara, California pp 139–145. NASA JPL TM33–355.

    Google Scholar 

  • Mikulas, M.M. and Cassapakis, C. (1995). Rigidizable structural concepts for the new generation of small spacecraft. In Proc. 36th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 10–12 April 1995, New Orleans, AIAA Paper no 951277.

    Google Scholar 

  • Mikulas, M.M. and Thomson, M. (1994). State of the art and technology needs for large space structures. In New and projected aeronautical and space systems, design concepts, and loads, (Edited by A. K. Noor and S. L. Venneri ), pp 173–238. ASME, New York.

    Google Scholar 

  • Miura, K. and Miyazaki, Y. (1990). Concept of the tension truss antenna. AIAA Journal, 28: 1098–1104.

    Article  Google Scholar 

  • Natori, M., Okazaki, K., Sakamaki, M., Tabata, M. and Miura, K. (1986). Model Study of Simplex Masts. In Proc. The Fifteenth International Symposium on Space Technology and Science, Tokyo, Japan pp 489–496.

    Google Scholar 

  • Rimrott, F.P.J. (1965). Storable tubular extendible member: a unique machine element. Machine Design, 37: 156–163.

    Google Scholar 

  • Roederer, A.G. and Rahmat-Samii, Y. (1989). Unfurlable satellite antennas: a review. Annales des Telecommunications, 44: 475–488.

    Google Scholar 

  • Seffen, K.A. and Pellegrino, S. (1999). Deployment dynamics of tape springs. Proceedings of the Royal Society of London, Series A, 455: 1003–1048.

    Article  MATH  MathSciNet  Google Scholar 

  • Thomson, M.W. (1997). The AstroMesh deployable reflector. In Proc. Fifth International Mobile Satellite Conference (IMSC’97),16–18 June 1997, Pasadena, CA pp 393–398. JPL Publication 97–11.

    Google Scholar 

  • Timoshenko, S.P. and Gere, J.H. (1961). Theory of Elastic Stability, Second edition. McGraw-Hill, New York.

    Google Scholar 

  • Timoshenko, S.P. and Woinowsky-Krieger, S. (1959). Theory of plates and shells, McGraw-Hill Kogakusha, Tokyo.

    Google Scholar 

  • Warden, R.M. (1987). Folding, Articulated, Square Truss. In Proc. 21st Aerospace Mechanisms Symposium,L.B. Johnson Space Center, Houston, Texas, 29 April 1987 pp 1–17. NASA-CP2470.

    Google Scholar 

  • Webb, J.E. and Mauch, H.R. (1969). Deployable Lattice Column,USA Patent 3486279.

    Google Scholar 

  • You, Z. and Pellegrino, S. (1996). Cable-stiffened pantographic deployable structures. Part 1: Triangular Mast. AIAA Journal, 34: 813–820.

    Article  Google Scholar 

  • You, Z. and Pellegrino, S. (1997a). Cable-stiffened pantographic deployable structures. Part 2: Mesh Reflector. A/AA Journal, 35: 1348–1355.

    Google Scholar 

  • You, Z. and Pellegrino, S. (1997b). Foldable bar structures. International Journal of Solids and Structures, 34: 1825–1847.

    Article  MATH  Google Scholar 

  • Zanardo, A. (1986). Two-dimensional articulated systems developable on a single or double curvature. Meccanica, 21: 106–111.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Wien

About this chapter

Cite this chapter

Pellegrino, S. (2001). Deployable Structures in Engineering. In: Pellegrino, S. (eds) Deployable Structures. International Centre for Mechanical Sciences, vol 412. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2584-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2584-7_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83685-9

  • Online ISBN: 978-3-7091-2584-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics