Skip to main content

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 432))

Abstract

The aim of this lecture is to present possibilities how to extend the validity of shakedown theory to other than linear elastic-ideal plastic or linear elastic- unlimited linear hardening material behaviour in conjunction with the validity of the normality rule. More precisely, the following items will be discussed: application of the General Standard Material Model, introduction of material damage in shakedown theory, use of no-associated flow rules and the notion of the Sanctuary of Elasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Boulbibane, M. (1995). Application de la Théorie d’Adaptation aux Milieux Elastoplastiques Non-Standards: Cas des Géomatériaux. Ph. D. Dissertation, University of Lille.

    Google Scholar 

  • Boulbibane M., and Weichert D. (1997). Application of shakedown theory to soils with non-associated flow-rules. Mech. Res. Comm. 24: 513–519.

    Article  MathSciNet  MATH  Google Scholar 

  • Dorosz, S. (1976). An upper bound to maximum residual deflections of elastic-plastic structures at shakedown. Bull. Acad. Polon. Sci. Ser. Sci. Tech. 24: 167–174.

    MATH  Google Scholar 

  • Druyanov, B. and Roman, I. (1998). On adaptation (shakedown) of a class of damaged elastic plastic bodies to cyclic loading. Eur. J. Mech. A/Solids 17: 71–78.

    Article  MATH  Google Scholar 

  • Feng, X.Q. and Yu, S.W. (1995). Damage and shakedown analysis of structures with strain-hardening. Int. J. Plasticity 11: 237–249.

    Article  MathSciNet  MATH  Google Scholar 

  • Green, A.E. and Naghdi, P.M. (1965). A general theory of elastic-Plastic continuum. Arch. Rat. Mech. Analys. 18: 251–281.

    MathSciNet  MATH  Google Scholar 

  • Hachemi, A. and Weichert, D. (1992). An extension of the static shakedown theorem to a certain class of inelastic materials with damage. Arch. Mech. 44: 491–498.

    MATH  Google Scholar 

  • Hachemi, A. (1994). Contribution à l’Analyse de l’Adaptation des Structures Inélastiques avec Prise en Compte de l’Endommagement. Ph. D. Dissertation, University of Lille.

    Google Scholar 

  • Hachemi, A. and Weichert, D. (1997). Application of shakedown theory to damaging inelastic material under mechanical and thermal loads. Int. J. Mech. Sci. 39: 1067–1076.

    Article  MATH  Google Scholar 

  • Halphen, B. and Nguyen, Q.S. (1975). Sur les matériaux standards généralisés. J. Mécanique 14: 39–63.

    MATH  Google Scholar 

  • Hill, R. (1950). The Mathematical Theory of Plasticity. Oxford.

    Google Scholar 

  • Ju, J.W. (1989). On energy-based coupled elastoplastic damage theories: Constitutive modeling and computational aspects. Int. J. Solids Struct. 25: 803–833.

    Article  MATH  Google Scholar 

  • Kachanov, L.M. (1958). Time of the rupture process under creep conditions. Izv. Akad. Nauk, S.S.R., Otd. Tech. Nauk 8: 26–31.

    Google Scholar 

  • König, J.A. (1987). Shakedown of Elastic-Plastic Structures. Amsterdam: Elsevier.

    Google Scholar 

  • Koiter, W.T. (1956). A new general theorem on shake-down of elastic-plastic structures. Proc. Koninkl. Ned. Akad. Wet. B59: 24–34.

    MathSciNet  MATH  Google Scholar 

  • Koiter, W.T. (1960). General theorems for elastic-plastic solids. In Sneddon, I.N. and Hill, R., eds. Progress in Solid Mechanics. Amsterdam: North-Holland. 165–221.

    Google Scholar 

  • Lee, E.H. (1969). Elasto-plastic deformation at finite strains. J. Appl. Mech. 36: 1–6.

    Article  MATH  Google Scholar 

  • Lemaitre, J. (1985) A continuous damage mechanics model for ductile fracture. J. Engng. Mat. Tech. 107: 83–89.

    Article  Google Scholar 

  • Lemaitre, J. and Chaboche, J.L. (1985). Mécanique des matériaux solides. Paris: Dunod.

    Google Scholar 

  • Lemaitre, J. (1987). Formulation unifiée des lois d’évolution d’endommagement. C. R. Acad. Sci. 305: 1125–1130.

    MathSciNet  MATH  Google Scholar 

  • Loret, B. (1987). Elastoplasticité à Simple Potentiel. Paris: Presse E.N des Ponts et Chaussées.

    Google Scholar 

  • Maier, G. (1969). Shakedown theory in perfect elastoplasticity with associated and non-associated flow-laws. Meccanica 6: 250–260.

    Article  Google Scholar 

  • Melan, E. (1936). Theorie statisch unbestimmter Systeme aus ideal-plastischem Baustoff. Sitber. Akad. Wiss., Wien, Abt. HA 145: 195–218.

    MATH  Google Scholar 

  • Melan, E. (1938). Zur Plastizität des räumlichen Kontinuums. Ing. Arch. 9: 116–126.

    Article  MATH  Google Scholar 

  • Nayroles, B. and Weichert, D. (1993). La notion de sanctuaire d’élasticité et l’adaptation des structures. C.R. Acad. Sci. 316: 1493–1498.

    MATH  Google Scholar 

  • Polizzotto, C., Borino, G. and Fuschi, P. (1996). An extended shakedown theory for elastic-plasticdamage material models. Eur. J. Mech. A/Solids 15: 825–858.

    MathSciNet  MATH  Google Scholar 

  • Polizzotto, C., Borino, G. and Fuschi, P. (2001). Weak forms of shakedown for elastic-plastic structures exhibiting ductile damage. Meccanica 36: 49–66.

    Article  MathSciNet  MATH  Google Scholar 

  • Pycko, S. and Mrôz, Z. (1992). Alternative approach to shakedown as a solution of a min-max problem. Acta Mechanica 93: 205–222.

    Article  MathSciNet  MATH  Google Scholar 

  • Shichun, W. and Hua, L. (1990). A kinetic equation for ductile damage at large plastique strain. J. Mat. Proc. Tech. 21: 295–302.

    Article  Google Scholar 

  • Weichert, D. and Gross-Weege, J. (1988). The numerical assessment of elastic-plastic sheets under variable mechanical and thermal loads using a simplified two-surface yield condition. Int. J. Mech. Sci. 30: 757–767.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Wien

About this chapter

Cite this chapter

Weichert, D., Hachemi, A. (2002). Advanced Material Modelling in Shakedown Theory. In: Weichert, D., Maier, G. (eds) Inelastic Behaviour of Structures under Variable Repeated Loads. International Centre for Mechanical Sciences, vol 432. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2558-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2558-8_10

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83687-3

  • Online ISBN: 978-3-7091-2558-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics