Skip to main content

Abstract

Cephalochordates, which together with vertebrates and tunicates constitute the Chordata, were initially thought to be mollusks by Pallas (1774), who described Limax lanceolatus. The name was revised to Branchiostoma lubricum by Costa (1834), who recognized its affinity to fishes, and to Amphioxus lanceolatus by Yarrell, who considered it most closely allied to the agnathans among the vertebrates (Yarrell 1836). Due to precedence of the name Branchiostoma, the European species came to be classified as Branchiostoma lanceolatum, and the term “amphioxus” has become a common name for cephalochordates, which are also called lancelets. The name “Branchiostoma” means “gill mouth” and is an apparent reference to the motile sensory cirri around the mouth which keep too large particles from being eaten. The terms “lanceolatum” and “amphioxus” refer to the elongated shape of the animal, which reaches a maximum length of about 6 cm and is pointed at both ends. Today, about 25 species of Branchiostoma are recognized. There are two additional genera, Asymmetron and Epigonichthys, which are similar to Branchiostoma, but have a series of gonads only on the right side compared to both sides in Branchiostoma (Fig. 3.1B). A single species of Epigonichthys (E. maldivensis) and two of Asymmetron (A. lucayanum and A. interferum) have been described; however, there may be additional cryptic species of Asymmetron (Kon et al. 2007). In phylogenetic analysis with whole mitochondrial genome sequences, Asymmetron is basal in the cephalochordates with a divergence time of about 162 my from the Branchiostoma and Epigonichthys clade (Fig. 3.1A; Kon et al. 2007; Nohara et al. 2005). Although virtually nothing is known about any aspect of the biology of Epigonichthys, much more is known about Asymmetron lucayanum, which was first described from Bimini, Bahamas, by Andrews (1893). He obtained a few embryos, which developed to the gastrula stage when they “were destroyed by an accident.” It was over 100 years before more embryos of A. lucayanum were obtained and the embryology described (Holland and Holland 2010). It was discovered that animals spawn a few days before the new moon (Holland 2011), but to date, there are no studies of developmental genes.

Chapter vignette artwork by Brigitte Baldrian.© Brigitte Baldrian and Andreas Wanninger.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi N, Kuratani S (2012) Development of head and trunk mesoderm in the dogfish, Scyliorhinus torazame: I. Embryology and morphology of the head cavities and related structures. Evol Dev 14(3):234–256. doi:10.1111/j.1525-142X.2012.00542.x

  • Adachi N, Takechi M, Hirai T, Kuratani S (2012) Development of the head and trunk mesoderm in the dogfish, Scyliorhinus torazame: II. Comparison of gene expression between the head mesoderm and somites with reference to the origin of the vertebrate head. Evol Dev 14(3):257–276. doi:10.1111/j.1525-142X.2012.00543.x

    CAS  PubMed  Google Scholar 

  • Alexander RM (1981) The chordates. Cambridge University Press, Cambridge

    Google Scholar 

  • Andrews EA (1893) An undescribed acraniate: Asymmetron lucayanum. Stud Biol Lab Johns Hopkins Univ 5:213–247 + pl. XII–XIV

    Google Scholar 

  • Angerer LM, Angerer RC (2000) Animal – vegetal axis patterning mechanisms in the early sea urchin embryo. Dev Biol 218(1):1–12. doi:http://dx.doi.org/10.1006/dbio.1999.9553

    CAS  PubMed  Google Scholar 

  • Antri M, Cyr A, Auclair F, Dubuc R (2006) Ontogeny of 5-HT neurons in the brainstem of the lamprey, Petromyzon marinus. J Comp Neurol 495(6):788–800. doi:10.1002/cne.20910

    PubMed  Google Scholar 

  • Ayers H (1890) Contribution to the morphology of the vertebrate head. Zool Anz 13:504–507

    Google Scholar 

  • Ayers H (1907) Vertebrate cephalogenesis. III. Amphioxus and Bdellostoma. University of Cincinnati, pp 1–40

    Google Scholar 

  • Baccetti B, Burrini AG, Dallai R (1972) The spermatozoon of Branchiostoma lanceolatum L. J Morphol 136:211–226

    CAS  PubMed  Google Scholar 

  • Balavoine G, Adoutte A (2003) The segmented urbilateria: a testable scenario. Integr Comp Biol 43(1):137–147. doi:10.1093/icb/43.1.137

    PubMed  Google Scholar 

  • Balfour FM (1885) A treatise on comparative embryology, vol 2, 2nd edn. MacMillan, London

    Google Scholar 

  • Balinsky BI (1981) An introduction to embryology, 5th edn. Saunders College Publishing, Philadelphia

    Google Scholar 

  • Bardet PL, Schubert M, Horard B, Holland LZ, Laudet V, Holland ND, Vanacker JM (2005) Expression of estrogen-receptor related receptors in amphioxus and zebrafish: implications for the evolution of posterior brain segmentation at the invertebrate-to-vertebrate transition. Evol Dev 7:223–233

    CAS  PubMed  Google Scholar 

  • Bateson W (1886) The ancestry of the Chordata. Q J Microsc Sci 26:535–571

    Google Scholar 

  • Beaster-Jones L, Kaltenbach SL, Koob TJ, Yuan SC, Chastain R, Holland LZ (2008) Expression of somite segmentation genes in amphioxus: a clock without a wavefront? Dev Genes Evol 218:599–611

    CAS  PubMed  Google Scholar 

  • Benito-Gutiérrez È, Weber H, Bryant DV, Arendt D (2013) Methods for generating year-round access to amphioxus in the laboratory. PLoS One 8(8):e71599. doi:10.1371/journal.pone.0071599

    PubMed Central  PubMed  Google Scholar 

  • Berrill NJ (1955) The origin of vertebrates. Clarendon Press, Oxford

    Google Scholar 

  • Berrill NJ (1987) Early chordate evolution. Part 1. Amphioxus, the riddle of the sands. Int J Invertebr Reprod Dev 11:1–14

    Google Scholar 

  • Bertrand S, Camasses A, Somorjai I, Belgacem MR, Chabrol O, Escande M-L, Pontarotti P, Escriva H (2011) Amphioxus FGF signaling predicts the acquisition of vertebrate morphological traits. Proc Natl Acad Sci U S A 108(22):9160–9165. doi:10.1073/pnas.1014235108

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bhatnagar MC, Bansal G (2008) Developmental biology. Krishna Prakashan Media Ltd., Meerut

    Google Scholar 

  • Blair JE, Hedges SB (2005) Molecular phylogeny and divergence times of deuterostome animals. Mol Biol Evol 19:2275–2284

    Google Scholar 

  • Blentic A, Chambers D, Skinner A, Begbie J, Graham A (2011) The formation of the cranial ganglia by placodally-derived sensory neuronal precursors. Mol Cell Neurosci 46(2):452–459. doi:http://dx.doi.org/10.1016/j.mcn.2010.11.010

    CAS  PubMed  Google Scholar 

  • Boorman C, Shimeld S (2002) Cloning and expression of a Pitx homeobox gene from the lamprey, a jawless vertebrate. Dev Genes Evol 212(7):349–353

    CAS  PubMed  Google Scholar 

  • Boschung HV, Gunter G (1962) Distribution and variation of Branchiostoma caribaeum in Mississippi Sound. Tulane Stud Zool 9:245–257

    Google Scholar 

  • Boveri T (1904) Ueber die phylogenetische Bedeutung der Sehorgane des Amphioxus. Zool Jahrb 7(suppl):409–428

    Google Scholar 

  • Brandhorst BP, Klein WH (2002) Molecular patterning along the sea urchin animal-vegetal axis. In: Kwang WJ (ed) Int rev cytol, vol 213. Acad Press, San Diego. pp 183–232. doi:http://dx.doi.org/10.1016/S0074-7696(02)13015-4

  • Browder LS, Erickson CA, Jeffery WR (1991) Developmental biology. Saunders College Publishing, Philadelphia

    Google Scholar 

  • Candiani S, Moronti L, De Pietri Tonelli D, Garbarino G, Pestarino M (2011) A study of neural-related microRNAs in the developing amphioxus. EvoDevo 2:15

    Google Scholar 

  • Candiani S, Moronti L, Ramoino P, Schubert M, Pestarino M (2012) A neurochemical map of the developing amphioxus nervous system. BMC Neurosci 13:59. doi:10.1186/1471-2202-13-59

    PubMed Central  PubMed  Google Scholar 

  • Capdevila J, Belmonte JCI (2001) Patterning mechanisms controlling vertebrate limb development. Annu Rev Cell Dev Biol 17:87–132

    CAS  PubMed  Google Scholar 

  • Castro LFC, Rasmussen SLK, Holland PWH, Holland ND, Holland LZ (2006) A Gbx homeobox gene in amphioxus: insights into ancestry of the ANTP class and evolution of the midbrain/hindbrain boundary. Dev Biol 295(1):40–51. doi:10.1016/j.ydbio.2006.03.003

  • Cerfontaine P (1906) Recherches sur le développement de l’amphioxus. Arch Biol Liege 22:229–418 + pl. XII–XXII

    Google Scholar 

  • Chabry L (1887) Contribution à embryologie normale et tératologique des Ascidie. J Anat Physiol 23:167–319

    Google Scholar 

  • Chapman SC, Schubert FR, Schoenwolf GC, Lumsden A (2002) Analysis of spatial and temporal gene expression patterns in blastula and gastrula stage chick embryos. Dev Biol 245(1):187–199. doi:http://dx.doi.org/10.1006/dbio.2002.0641

    CAS  PubMed  Google Scholar 

  • Chea HK, Wright CV, Swalla BJ (2005) Nodal signaling and the evolution of deuterostome gastrulation. Dev Dyn 234(2):269–278. doi:10.1002/dvdy.20549

    CAS  PubMed  Google Scholar 

  • Chipman AD (2010) Parallel evolution of segmentation by co-option of ancestral gene regulatory networks. Bioessays 32(1):60–70. doi:10.1002/bies.200900130

    CAS  PubMed  Google Scholar 

  • Cole WC, Youson JH (1982) Morphology of the pineal complex of the anadromous sea lamprey, Petromyzon marinus L. Am J Anat 165(2):131–163. doi:10.1002/aja.1001650205

    CAS  PubMed  Google Scholar 

  • Conklin EG (1905a) The early development of chordates in the light of the embryology of ascidians. Science 21:264–265

    Google Scholar 

  • Conklin EG (1905b) The organization and cell-lineage of the ascidian egg. J Acad Nat Sci Phila 13(Ser 2):1–119, pl.I-XI

    Google Scholar 

  • Conklin EG (1926) The embryology of amphioxus and the equipotential theory of development. Science 64:508–509

    Google Scholar 

  • Conklin EG (1932) The embryology of amphioxus. J Morphol 54:69–141

    Google Scholar 

  • Conklin EG (1933) The development of isolated and partially separated blastomeres of amphioxus. J Exp Zool 64:303–375

    Google Scholar 

  • Costa OG (1834) Cenni Zoologici ossia descrizione sommaria delle specie nuove di animali discoperti in diverse contrade del regno nell’anno 1834. Azzolino, Napoli

    Google Scholar 

  • Couso JP (2009) Segmentation, metamerism and the Cambrian explosion. Int J Dev Biol 53:1305–1316

    PubMed  Google Scholar 

  • Damas H (1944) Recherches sur le developpement de Lampetra fluviatilis L. Contribution à l’étude de la céphalogenèse des vertébrés. Arch Biol 55:1–248 + pl. I–III

    Google Scholar 

  • Damen WGM (2007) Evolutionary conservation and divergence of the segmentation process in arthropods. Dev Dyn 236(6):1379–1391. doi:10.1002/dvdy.21157

    CAS  PubMed  Google Scholar 

  • Danesin C, Peres JN, Johansson M, Snowden V, Cording A, Papalopulu N, Houart C (2009) Integration of telencephalic Wnt and Hedgehog signaling center activities by Foxg1. Dev Cell 16(4):576–587. doi:http://dx.doi.org/10.1016/j.devcel.2009.03.007

    CAS  PubMed  Google Scholar 

  • Davidson EH, Erwin DH (2006) Gene regulatory networks and the evolution of animal body plans. Science 311(5762):796–800. doi:10.1126/science.1113832

    CAS  PubMed  Google Scholar 

  • Dawes R, Dawson I, Falciani F, Tear G, Akam M (1994) Dax, a locust Hox gene related to fushi-tarazu but showing no pair-rule expression. Development 120(6):1561–1572

    CAS  PubMed  Google Scholar 

  • De Robertis EM (2008a) Evo-devo: variations on ancestral themes. Cell 132(2):185–195. doi:http://dx.doi.org/10.1016/j.cell.2008.01.003

    PubMed Central  PubMed  Google Scholar 

  • De Robertis EM (2008b) The molecular ancestry of segmentation mechanisms. Proc Natl Acad Sci U S A 105:16411–16412

    PubMed Central  PubMed  Google Scholar 

  • De Robertis EM, Oliver G, Wright CV (1990) Homeobox genes and the vertebrate body plan. Sci Am 263:46–52

    PubMed  Google Scholar 

  • del Pilar Gomez M, Nasi E (2010) On the transduction gain of melanopsin-mediated light signaling in amphioxus: single-photon, unitary, and early receptor currents. J Gen Physiol 136:6A

    Google Scholar 

  • del Pilar Gomez M, Angueyra JM, Nasi E (2009) Light-transduction in melanopsin-expressing photoreceptors of amphioxus. Proc Natl Acad Sci 106:9081–9086

    CAS  PubMed Central  Google Scholar 

  • Delsman HC (1922) The ancestry of vertebrates. Valkoff, Amersfoort

    Google Scholar 

  • Delsuc F, Brinkmann H, Chourrout D, Philippe H (2006) Tunicates and not cephalochordates are the closest living relatives of the vertebrates. Nature 439:965–968

    CAS  PubMed  Google Scholar 

  • Delsuc F, Tsagkogeorga G, Lartillot N, Philippe H (2008) Additional molecular support for the new chordate phylogeny. Genesis 46:592–604

    PubMed  Google Scholar 

  • Denoeud F, Henriet S, Mungpakdee S, Aury J-M, Da Silva C, Brinkmann H, Mikhaleva J, Olsen LC, Jubin C, Cañestro C, Bouquet J-M, Danks G, Poulain J, Campsteijn C, Adamski M, Cross I, Yadetie F, Muffato M, Louis A, Butcher S, Tsagkogeorga G, Konrad A, Singh S, Jensen MF, Cong EH, Eikeseth-Otteraa H, Noel B, Anthouard V, Porcel BM, Kachouri-Lafond R, Nishino A, Ugolini M, Chourrout P, Nishida H, Aasland R, Huzurbazar S, Westhof E, Delsuc F, Lehrach H, Reinhardt R, Weissenbach J, Roy SW, Artiguenave F, Postlethwait JH, Manak JR, Thompson EM, Jaillon O, Du Pasquier L, Boudinot P, Liberles DA, Volff J-N, Philippe H, Lenhard B, Crollius HR, Wincker P, Chourrout D (2010) Plasticity of animal genome architecture unmasked by rapid evolution of a pelagic tunicate. Science 330(6009):1381–1385. doi:10.1126/science.1194167

    CAS  PubMed Central  PubMed  Google Scholar 

  • Denuce JM (1996) Enzymatischer Abbau der Embryonalhüllen des Lanzettfischens, Branchiostoma lanceolatum, während des Schlupfens. Z Naturforsch C 51:113–118

    Google Scholar 

  • Desdevises Y, Maillet V, Fuentes M, Escriva H (2011) A snapshot of the population structure of Branchiostoma lanceolatum in the Racou Beach, France, during its spawning season. PLoS One 6(4):e18520. doi:10.1371/journal.pone.0018520

  • Dohrn A (1875) Der Ursprung der Wirbelthiere und das Princip des Functionswechsels. Genealogische Skizzen, 4th edn. Wilhelm Engelmann, Leipzig

    Google Scholar 

  • Drach P (1948) La notion de procordé dt les embranchements de cordés. In: Grasse PP (ed) Traité de Zoologie: Anatomie, Systematique, Biologie: Echinodermes, Stomocordes, Procordes, vol XI. Masson et Cie, Paris, pp 545–551

    Google Scholar 

  • Dworkin S, Jane S (2013) Novel mechanisms that pattern and shape the midbrain-hindbrain boundary. Cell Mol Life Sci 70(18):3365–3374. doi:10.1007/s00018-012-1240-x

    CAS  PubMed  Google Scholar 

  • Eagleson GW, Dempewolf RD (2002) The role of the anterior neural ridge and Fgf-8 in early forebrain patterning and regionalization in Xenopus laevis. Comp Biochem Physiol B Biochem Mol Biol 132(1):179–189. doi:10.1016/s1096-4959(01)00521-8

    PubMed  Google Scholar 

  • Eakin RM, Westfall JA (1962) Fine structure of photoreceptors in amphioxus. J Ultrastruct Res 6:531–539

    CAS  PubMed  Google Scholar 

  • Emily-Fenouil F, Ghiglione C, Lhomond G, Lepage T, Gache C (1998) GSK3beta/shaggy mediates patterning along the animal-vegetal axis of the sea urchin embryo. Development 125(13):2489–2498

    CAS  PubMed  Google Scholar 

  • Eriksson BJ, Ungerer P, Stollewerk A (2013) The function of Notch signalling in segment formation in the crustacean Daphnia magna (Branchiopoda). Dev Biol 383(2):321–330. doi:http://dx.doi.org/10.1016/j.ydbio.2013.09.021

    CAS  PubMed  Google Scholar 

  • Escriva H, Holland ND, Groenmeyer H, Laudet V, Holland LZ (2002) The retinoic acid signaling pathway regulates anterior/posterior patterning in the nerve cord and pharynx of amphioxus, a chordate lacking neural crest. Development 129:2905–2916

    Google Scholar 

  • Ferrier DEK, Minguillon C, Holland PWH, Garcia-Fernàndez J (2000) The amphioxus Hox cluster: deuterostome posterior flexibility and Hox 14. Evol Dev 2:284–293

    Google Scholar 

  • Ferrier DEK, Brooke NM, Panopoulou G, Holland PWH (2001) The Mnx homeobox gene class defined by HB9, MNR2 and amphioxus AmphiMnx. Dev Genes Evol 211:103–107

    CAS  PubMed  Google Scholar 

  • Fjose A, McGinnis WJ, Gehring WJ (1985) Isolation of a homoeo box-containing gene from the engrailed region of Drosophila and the spatial distribution of its transcripts. Nature 313(6000):284–289

    CAS  PubMed  Google Scholar 

  • Flood PR (1966) A peculiar mode of muscular innervation in amphioxus. Light and electron microscopic studies of the so-called ventral roots. J Comp Neurol 126:181–218

    CAS  PubMed  Google Scholar 

  • Flood PR (1970) The connection between spinal cord and notochord in amphioxus (Branchiostoma lanceolatum). Z Zellforsch Mikrosk Anat 103:115–128

    CAS  PubMed  Google Scholar 

  • Flood PR (1975a) Ciliary rootlet-fibres as tail fin-rays in larval amphioxus (Branchiostoma lanceolatum, Pallas). J Ultrastruct Res 51:218–225

    CAS  PubMed  Google Scholar 

  • Flood PR (1975b) Fine structure of the notochord of amphioxus. Symp Zool Soc Lond 36:81–104

    Google Scholar 

  • Franz V (1933) Das Gefasssystem der Akranier. Handb Verg Anat Wirbeltiere 6:451–466

    Google Scholar 

  • Fredriksson G, Ericson LE, Olsson R (1984) Iodine binding in the endostyle of larval Branchiostoma lanceolatum (Cephalochordata). Gen Comp Endocrinol 56:177–184

    Google Scholar 

  • Fredriksson G, Ofverholm T, Ericson LE (1985) Electron-microscopic studies of iodine-binding and peroxidase activity in the endostyle of the larval amphioxus (Branchiostoma lanceolatum). Cell Tissue Res 241:257–266

    Google Scholar 

  • Freter S, Fleenor SJ, Freter R, Liu KJ, Begbie J (2013) Cranial neural crest cells form corridors prefiguring sensory neuroblast migration. Development 140(17):3595–3600. doi:10.1242/dev.091033

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fuentes M, Schubert M, Dalfo D, Candiani S, Benito E, Gardenyes J, Godoy L, Moret F, Illas M, Patten I, Permanyer J, Oliveri D, Boeuf G, Falcon J, Pestarino M, Garcia Fernandez J, Albalat R, Laudet V, Vernier P, Escriva H (2004) Preliminary observations on the spawning conditions of the European amphioxus (Branchiostoma lanceolatum) in captivity. J Exp Zool 302B:384–391

    Google Scholar 

  • Fuentes M, Benito E, Bertrand S, Paris M, Mignardot A, Godoy L, Jimenez-Delgado S, Oliveri D, Candiani S, Hirsinger E, D’Aniello S, Pascual-Anaya J, Maeso I, Pestarino M, Vernier P, Nicolas J-F, Schubert M, Laudet V, Geneviere AM, Albalat R, Garcia Fernandez J, Holland ND, Escriva H (2007) Insights into spawning behavior and development of the European amphioxus (Branchiostoma lanceolatum). J Exp Zool 308B:484–493

    Google Scholar 

  • Gans C, Northcutt RG (1983) Neural crest and the origin of vertebrates: a new head. Science 220:268–274

    CAS  PubMed  Google Scholar 

  • Garcia-Fernàndez J, Holland PWH (1994) Archetypal organization of the amphioxus Hox gene cluster. Nature 370:563–566

    PubMed  Google Scholar 

  • Garstang W (1928) The morphology of the Tunicata, and its bearings on the phylogeny of the Chordata. QJMS 72(na):51–187

    Google Scholar 

  • Garstang W (1960) Amphioxus. In: Yust W (ed) Encyclopaedia Britannica, vol 1, 14th edn. Encyclopaedia Britannica, Chicago, pp 843–846

    Google Scholar 

  • Garstang SL, Garstang W (1926) On the development of Botrylloides and the ancestry of vertebrates. Proc Leeds Phil Lit Soc 1:81–86

    Google Scholar 

  • Gerhart J, Kirschner M (1997) Cells, embryos, and evolution. Blackwell, Malden

    Google Scholar 

  • Giacobbe S (2012) Biodiversity loss in Sicilian transitional waters: the molluscs of Faro lake. Biodivers J 3:501–510

    Google Scholar 

  • Gilmour THJ (1996) Feeding methods of cephalochordate larvae. Isr J Zool 42(Supplement):87–95

    Google Scholar 

  • Glardon S, Callaerts P, Halder G, Gehring WJ (1997) Conservation of Pax-6 in a lower chordate, the ascidian Phallusia mammillata. Development 124:817–825

    CAS  PubMed  Google Scholar 

  • Glardon S, Holland LZ, Gehring WJ, Holland ND (1998) Isolation and developmental expression of the amphioxus Pax-6 gene (AmphiPax-6): insights into eye and photoreceptor evolution. Development 125(14):2701–2710

    CAS  PubMed  Google Scholar 

  • Glavic A, Gómez-Skarmeta JL, Mayor R (2002) The homeoprotein Xiro1 is required for midbrain-hindbrain boundary formation. Development 129(7):1609–1621

    CAS  PubMed  Google Scholar 

  • Goodrich ES (1933) The nephridia of Asymmetron and Branchiostoma compared. Q J Microsc Sci 75:723–734

    Google Scholar 

  • Gorbman A (1999) Brain-Hatschek’s pit relationships in amphioxus species. Acta Zool Stockh 80:301–305

    Google Scholar 

  • Gorbman A, Nozaki M, Kubokawa K (1999) A brain-Hatschek’s pit connection in amphioxus. Gen Comp Endocrinol 113:251–254

    CAS  PubMed  Google Scholar 

  • Guthrie DM (1975) The physiology and structure of the nervous system of amphioxus (the lancelet), Branchiostoma lanceolatum Pallas. Symp Zool Soc Lond 36:43–80

    Google Scholar 

  • Haeckel E (1876) The evolution of man: a popular exposition of the principal points of human ontogeny and phylogeny (Anyhropogenie oder Entwicklungseschichte des Menschen). Kegen Paul, London, (Translated from the German) Wilhelm Engelmann, Leipzig

    Google Scholar 

  • Hashiguchi M, Mullins MC (2013) Anteroposterior and dorsoventral patterning are coordinated by an identical patterning clock. Development 140(9):1970–1980. doi:10.1242/dev.088104

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hatschek B (1878) Studien über Entwicklungsgeschichte der Anneliden. Ein Beitrag zur Morphologie der Bilaterien. Arb Zool Inst Wien 11:1–128

    Google Scholar 

  • Hatschek B (1884) Mittheilungen uber Amphioxus. Zool Anz 7:517–520

    Google Scholar 

  • Hatschek B (1893) The amphioxus and its development (translated by Tuckey J). Swan Sonnenschein, London

    Google Scholar 

  • Hatta K, Schilling TF, BreMiller RA, Kimmel CB (1990) Specification of jaw muscle identity in zebrafish: correlation with engrailed-homeoprotein expression. Science 250:802–805

    CAS  PubMed  Google Scholar 

  • Henmi Y, Yamaguchi T (2003) Biology of the amphioxus, Branchiostoma belcheri in the Ariake Sea, Japan. I. Population structure and growth. Zoolog Sci 20:897–906

    PubMed  Google Scholar 

  • Hesse R (1898) Die Sehorgane des Amphioxus. Jahareshefte des Vereins fur vaterlandische. Naturkunde Wurttemberg 54:lxxxiii–lxxxiv

    Google Scholar 

  • Hidalgo-Sánchez M, Millet S, Bloch-Gallego E, Alvarado-Mallart R-M (2005) Specification of the meso-isthmo-cerebellar region: the Otx2/Gbx2 boundary. Brain Res Rev 49(2):134–149. doi:10.1016/j.brainresrev.2005.01.010

    PubMed  Google Scholar 

  • Hinman VF, Davidson EH (2007) Evolutionary plasticity of developmental gene regulatory network architecture. Proc Natl Acad Sci 104(49):19404–19409. doi:10.1073/pnas.0709994104

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hirakow R, Kajita N (1990) An electron microscopic study of the development of amphioxus, Branchiostoma belcheri tsingtauense: cleavage. J Morphol 203:331–334

    Google Scholar 

  • Hirakow R, Kajita N (1991) Electron microscopic study of the development of amphioxus Branchiostoma belcheri tsingtauense: the gastrula. J Morphol 207:37–52

    Google Scholar 

  • Hirakow R, Kajita N (1994) Electron microscopic study of the development of amphioxus, Branchiostoma belcheri tsingtauense: the neurula and larva. Acta Anat Nippon 69:1–13

    CAS  PubMed  Google Scholar 

  • Holland PWH (2002) Heads or tails? Amphioxus and the evolution of anterior-posterior patterning in deuterostomes. Dev Biol 241:209–228

    Google Scholar 

  • Holland LZ (2009) Chordate roots of the vertebrate nervous system: expanding the molecular toolkit. Nat Rev Neurosci 10:736–746

    CAS  PubMed  Google Scholar 

  • Holland ND (2011) Spawning periodicity of the lancelet, Asymmetron lucayanum (Cephalochordata), in Bimini, Bahamas. Ital J Zool 78:478–486. doi:10.1080/11250003.2011.594097

    Google Scholar 

  • Holland ND, Holland LZ (1989) Fine structural study of the cortical reaction and formation of the egg coats in a lancelet (= amphioxus), Branchiostoma floridae (phylum Chordata: subphylum Cephalochordata = Acrania). Biol Bull 176:111–122

    Google Scholar 

  • Holland ND, Holland LZ (1990) Fine structure of the mesothelia and extracellular materials in the coelomic fluid of the fin boxes, myocoels and sclerocoels of a lancelet, Branchiostoma floridae (Cephalochordata = Acrania). Acta Zool (Stockh) 71:225–234

    Google Scholar 

  • Holland ND, Holland LZ (1991a) The fine structure of the growth stage oocytes of a lancelet (= amphioxus), Branchiostoma lanceolatum. Invertebr Reprod Dev 19:107–122

    Google Scholar 

  • Holland ND, Holland LZ (1991b) The histochemistry and fine structure of the nutritional reserves in the fin rays of a lancelet, Branchiostoma lanceolatum (Cephalochordata = Acrania). Acta Zool (Stockh) 72:203–207

    Google Scholar 

  • Holland LZ, Holland ND (1992) Early development in the lancelet (= amphioxus) Branchiostoma floridae from sperm entry through pronuclear fusion: presence of vegetal pole plasm and lack of conspicuous ooplasmic segregation. Biol Bull 182:77–96

    Google Scholar 

  • Holland ND, Holland LZ (1993a) Embryos and larvae of invertebrate deuterostomes. In: Stern CD, Holland PWH (eds) Essential developmental biology, a practical approach. IRL Press, Oxford, pp 21–33

    Google Scholar 

  • Holland ND, Holland LZ (1993b) Serotonin-containing cells in the nervous system and other tissues during ontogeny of a lancelet, Branchiostoma floridae. Acta Zool (Stockh) 74:195–204

    Google Scholar 

  • Holland ND, Holland LZ (1999) Amphioxus and the utility of molecular genetic data for hypothesizing body part homologies between distantly related animals. Am Zool 39:630–640

    Google Scholar 

  • Holland LZ, Holland ND (2001) Evolution of neural crest and placodes: amphioxus as a model for the ancestral vertebrate? J Anat 199(1–2):85–98. doi:10.1046/j.1469-7580.199.parts1-2.8.x

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holland ND, Holland LZ (2006) Stage- and tissue-specific patterns of cell division in embryonic and larval tissues of amphioxus during normal development. Evol Dev 8:142–149

    PubMed  Google Scholar 

  • Holland LZ, Holland ND (2007) A revised fate map for amphioxus and the evolution of axial patterning in chordates. Integr Comp Biol 47:360–372

    PubMed  Google Scholar 

  • Holland ND, Holland LZ (2010) Laboratory spawning and development of the Bahama lancelet, Asymmetron lucayanum (Cephalochordata): fertilization through feeding larvae. Biol Bull 219:132–141

    PubMed  Google Scholar 

  • Holland LZ, Short S (2008) Gene duplication, co-option and recruitment during the origin of the vertebrate brain from the invertebrate chordate brain. Brain Behav Evol 72:91–105

    PubMed  Google Scholar 

  • Holland ND, Yu JK (2002) Epidermal receptor development and sensory pathways in vitally stained amphioxus (Branchiostoma floridae). Acta Zool Stockh 83:309–319

    Google Scholar 

  • Holland LZ, Yu JK (2004) Cephalochordate (amphioxus) embryos: procurement, culture, basic methods. Methods Cell Biol 74:195–215

    PubMed  Google Scholar 

  • Holland PWH, Holland LZ, Williams NA, Holland ND (1992) An amphioxus homeobox gene: sequence conservation, spatial expression during development and insights into vertebrate evolution. Development 116:653–661

    CAS  PubMed  Google Scholar 

  • Holland ND, Holland LZ, Honma Y, Fujii T (1993) Engrailed expression during development of a lamprey, Lampetra japonica: a possible clue to homologies between agnathan and gnathostome muscles of the mandibular arch. Dev Growth Differ 35(2):153–160. doi:10.1111/j.1440-169X.1993.00153.x

    Google Scholar 

  • Holland PWH, Garcia-Fernandez J, Williams NA, Sidow A (1994) Gene duplications and the origins of vertebrate development. Development 1994(supplement):125–133

    Google Scholar 

  • Holland ND, Panganiban G, Henyey EL, Holland LZ (1996) Sequence and developmental expression of AmphiDll, an amphioxus Distal-less gene transcribed in the ectoderm, epidermis and nervous system: insights into evolution of craniate forebrain and neural crest. Development 122:2911–2920

    CAS  PubMed  Google Scholar 

  • Holland LZ, Kene M, Williams NA, Holland ND (1997) Sequence and embryonic expression of the amphioxus engrailed gene (AmphiEn): the metameric pattern of transcription resembles that of its segment-polarity homolog in Drosophila. Development 124(9):1723–1732

    CAS  PubMed  Google Scholar 

  • Holland LZ, Venkatesh TV, Gorlin A, Bodmer R, Holland ND (1998) Characterization and developmental expression of AmphiNk2-2, an NK2 class homeobox gene from amphioxus (Phylum Chordata; Subphylum Cephalochordata). Dev Genes Evol 208(2):100–105. doi:10.1007/s004270050159

    CAS  PubMed  Google Scholar 

  • Holland LZ, Schubert M, Kozmik Z, Holland ND (1999) Characterization of AmphiPax3/7, an amphioxus paired box gene: insights into chordate myogenesis, neurogenesis, and the possible evolutionary precursor of definitive vertebrate neural crest. Evol Dev 1:153–165

    CAS  PubMed  Google Scholar 

  • Holland LZ, Schubert M, Holland ND, Neuman T (2000) Evolutionary conservation of the presumptive neural plate markers AmphiSox1/2/3 and AmphiNeurogenin in the invertebrate chordate amphioxus. Dev Biol 226:18–33

    CAS  PubMed  Google Scholar 

  • Holland LZ, Rached LA, Tamme R, Holland ND, Inoko H, Shiina T, Burgtorf C, Lardelli M (2001) Characterization and developmental expression of the amphioxus homolog of Notch (AmphiNotch): evolutionary conservation of multiple expression domains in amphioxus and vertebrates. Dev Biol 232(2):493–507. doi:http://dx.doi.org/10.1006/dbio.2001.0160

    CAS  PubMed  Google Scholar 

  • Holland ND, Venkatesh TV, Holland LZ, Jacobs DK, Bodmer R (2003) AmphiNk2-tin, an amphioxus homeobox gene expressed in myocardial progenitors: insights into evolution of the vertebrate heart. Dev Biol 255:128–137

    CAS  PubMed  Google Scholar 

  • Holland LZ, Albalat R, Azumi K, Benito-Gutiérrez E, Blow MJ, Bronner-Fraser M, Brunet F, Butts T, Candiani S, Dishaw LJ, Ferrier DE, Garcia-Fernàndez J, Gibson-Brown JJ, Gissi C, Godzik A, Hallböök F, Hirose D, Hosomichi K, Ikuta T, Inoko H, Kasahara M, Kasamatsu J, Kawashima T, Kimura A, Kobayashi M, Kozmik Z, Kubokawa K, Laudet V, Litman GW, McHardy AC, Meulemans D, Nonaka M, Olinski RP, Pancer Z, Pennacchio LA, Pestarino M, Rast JP, Rigoutsos I, Robinson-Rechavi M, Roch G, Saiga H, Sasakura Y, Satake M, Satou Y, Schubert M, Sherwood N, Shiina T, Takatori N, Tello J, Vopalensky P, Wada S, Xu A, Ye Y, Yoshida K, Yoshizaki F, Yu JK, Zhang Q, Zmasek CM, de Jong PJ, Osoegawa K, Putnam NH, Rokhsar DS, Satoh N, Holland PW (2008a) The amphioxus genome illuminates vertebrate origins and cephalochordate biology. Genome Res 18:1100–1111. doi:10.1101/gr.073676.107

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holland LZ, Holland ND, Gilland E (2008b) Amphioxus and the evolution of head segmentation. Integr Comp Biol 48:630–646

    PubMed  Google Scholar 

  • Holland ND, Paris M, Koop D (2009) The club-shaped gland of amphioxus: export of secretion to the pharynx in pre-metamorphic larvae and apoptosis during metamorphosis. Acta Zool 90(4):372–379. doi:10.1111/j.1463-6395.2008.00379.x

    Google Scholar 

  • Holland LZ, Carvalho JE, Escriva H, Laudet V, Schubert M, Shimeld SM, Yu JK (2013) Evolution of bilaterian central nervous systems: a single origin? EvoDevo 4(1):27. doi:10.1186/2041-9139-4-27

    PubMed Central  PubMed  Google Scholar 

  • Huxley TH (1875) Preliminary note upon the brain and skull of Amphioxus lanceolatus. Proc R Soc Lond 23:127–132

    Google Scholar 

  • Irimia M, Piñeiro C, Maeso I, Gómez-Skarmeta JL, Casares F, Garcia-Fernàndez J (2010) Conserved developmental expression of Fezf in chordates and Drosophila and the origin of the Zona Limitans Intrathalamica (ZLI) brain organizer. EvoDevo 1(1):7

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jackman WR, Langeland JA, Kimmel CB (2000) Islet reveals segmentation in the amphioxus hindbrain homolog. Dev Biol 230:16–26

    Google Scholar 

  • Janssen R, Budd GE (2013) Deciphering the onychophoran ‘segmentation gene cascade’: gene expression reveals limited involvement of pair rule gene orthologs in segmentation, but a highly conserved segment polarity gene network. Dev Biol 382(1):224–234. doi:http://dx.doi.org/10.1016/j.ydbio.2013.07.010

    CAS  PubMed  Google Scholar 

  • Jeong J-Y, Einhorn Z, Mathur P, Chen L, Lee S, Kawakami K, Guo S (2007) Patterning the zebrafish diencephalon by the conserved zinc-finger protein Fezl. Development 134(1):127–136. doi:10.1242/dev.02705

    CAS  PubMed  Google Scholar 

  • Joseph H (1904) Ueber eigentumliche Zellstrukturen im Zentralnervensystem von Amphioxus. Verh Anat Ges 18:16–26

    Google Scholar 

  • Kaltenbach SL, Yu JK, Holland ND (2009) The origin and migration of the earliest-developing sensory neurons in the peripheral nervous system of amphioxus. Evol Dev 11:142–151

    PubMed  Google Scholar 

  • Kaneto S, Wada H (2011) Regeneration of amphioxus oral cirri and its skeletal rods: implications for the origin of the vertebrate skeleton. J Exp Zool 316B:409–417

    Google Scholar 

  • Khanna R (2004) Textbook of embryology. Discovery Publishing Pvt. Ltd, New Delhi

    Google Scholar 

  • Kim IOK, Kim IC, Kim S, Kwon YK, Han P-L, Jeon S-H, Kim SH (2005) CNS midline cells contribute to maintenance of the initial dorsoventral patterning of the Drosophila ventral neuroectoderm. J Neurobiol 62(4):397–405. doi:10.1002/neu.20104

    PubMed  Google Scholar 

  • Kobayashi H, Tsuneki K (1983) Histochemical distribution of peroxidase in ascidians with special reference to the endostyle and the branchial sac. Gen Comp Endocrinol 50:172–187

    CAS  PubMed  Google Scholar 

  • Kon T, Nohara M, Yamanoue Y, Fujiwara Y, Nishida M, Nishikawa T (2007) Phylogenetic position of a whale-fall lancelet (Cephalochordata) inferred from whole mitochondrial genome sequences. BMC Evol Biol 7(127):1–12

    Google Scholar 

  • Koop D, Holland ND, Semon M, Alvarez S, Rodriquez de Lera A, Laudet V, Holland LZ, Schubert M (2010) Retinoic acid signaling targets Hox genes during the amphioxus gastrula stage: insights into early anterior-posterior patterning of the chordate body plan. Dev Biol 338:98–106

    CAS  PubMed  Google Scholar 

  • Kornberg T (1981) Engrailed: a gene controlling compartment and segment formation in Drosophila. Proc Natl Acad Sci U S A 78:1095–1099

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kowalevsky AO (1867) Die Entwickelungsgeschichte des Amphioxus lanceolatus. Mem Acad Imp Sci St Petersb (Ser VII) 11(4):1–17 + pl. I–III

    Google Scholar 

  • Koyanagi M et al (2005) Cephalochordate melanopsin: evolutionary linkage between invertebrate visual cells and vertebrate photosensitive retinal ganglion cells. Curr Biol 15:1065–1069

    CAS  PubMed  Google Scholar 

  • Kozmik Z, Holland ND, Kalousova A, Paces J, Schubert M, Holland LZ (1999) Characterization of an amphioxus paired box gene, AmphiPax2/5/8: developmental expression patterns in optic support cells, nephidium, thyroid-like structures and pharyngeal gill slits, but not in the midbrain-hindbrain boundary region. Development 126:1295–1304

    CAS  PubMed  Google Scholar 

  • Kozmik Z, Holland LZ, Schubert M, Lacalli TC, Kreslova J, Vlcek C, Holland ND (2001) Characterization of amphioxus AmphiVent, an evolutionarily conserved marker for chordate ventral mesoderm. Genesis 29:172–179

    CAS  PubMed  Google Scholar 

  • Kozmik Z, Holland ND, Kreslova J, Oliveri D, Schubert M, Jonasova K, Holland LZ, Pestarino M, Benes V, Candiani S (2007) Pax–Six–Eya–Dach network during amphioxus development: conservation in vitro but context specificity in vivo. Dev Biol 306(1):143–159. doi:10.1016/j.ydbio.2007.03.009

    CAS  PubMed  Google Scholar 

  • Kuratani S (2008) Is the vertebrate head segmented?—evolutionary and developmental considerations. Integr Comp Biol 48(5):647–657. doi:10.1093/icb/icn015

    PubMed Central  PubMed  Google Scholar 

  • Kuratani S, Ueki T, Hirano S, Aizawa S (1998) Rostral truncation of a cyclostome, Lampetra japonica, induced by all-trans retinoic acid defines the head/trunk interface of the vertebrate body. Dev Dyn 211:35–51

    CAS  PubMed  Google Scholar 

  • Kuratani S, Murakami Y, Nobusada Y, Kusakabe R, Hirano S (2004) Developmental fate of the mandibular mesoderm in the lamprey, Lethenteron japonicum: comparative morphology and development of the gnathostome jaw with special reference to the nature of the trabecula cranii. J Exp Zool 302B(5):458–468. doi:10.1002/jez.b.21011

  • Kusakabe R, Kuratani S (2005) Evolution and developmental patterning of the vertebrate skeletal muscles: perspectives from the lamprey. Dev Dyn 234(4):824–834. doi:10.1002/dvdy.20587

    PubMed  Google Scholar 

  • Kusakabe R, Kuratani S (2007) Evolutionary perspectives from development of mesodermal components in the lamprey. Dev Dyn 236(9):2410–2420. doi:10.1002/dvdy.21177

    CAS  PubMed  Google Scholar 

  • Kusakabe R, Takechi M, Tochinai S, Kuratani S (2004) Lamprey contractile protein genes mark different populations of skeletal muscles during development. J Exp Zool 302B(2):121–133. doi:10.1002/jez.b.20009

    CAS  Google Scholar 

  • Kusakabe R, Kuraku S, Kuratani S (2011) Expression and interaction of muscle-related genes in the lamprey imply the evolutionary scenario for vertebrate skeletal muscle, in association with the acquisition of the neck and fins. Dev Biol 350(1):217–227. doi:http://dx.doi.org/10.1016/j.ydbio.2010.10.029

    CAS  PubMed  Google Scholar 

  • Lacalli TC (1996a) Frontal eye circuitry, rostral sensory pathways, and brain organization in amphioxus larvae: evidence from 3D reconstructions. Phil Trans R Soc B 351:243–263

    Google Scholar 

  • Lacalli TC (1996b) Landmarks and subdomains in the larval brain of Branchiostoma: vertebrate homologs and invertebrate antecedents. Isr J Zool 42(Supplement):131–146

    Google Scholar 

  • Lacalli TC (2002a) The dorsal compartment locomotory control system in amphioxus larvae. J Morphol 252:227–237

    PubMed  Google Scholar 

  • Lacalli TC (2002b) Sensory pathways in amphioxus larvae 1. Constituent fibre of the rostral and anterodorsal nerves, their targets and evolutionary significance. Acta Zool Stockh 83:149–166

    Google Scholar 

  • Lacalli TC (2003) Ventral neurons in the anterior nerve cord of amphioxus larvae. II. Further data on the pacemaker circuit. J Morphol 257:212–218

    PubMed  Google Scholar 

  • Lacalli TC (2004) Sensory systems in amphioxus: a window on the ancestral chordate condition. Brain Behav Evol 64(3):148–162

    PubMed  Google Scholar 

  • Lacalli TC (2008a) Basic features of the ancestral chordate brain: a protochordate perspective. Brain Res Bull 75:319–323

    PubMed  Google Scholar 

  • Lacalli TC (2008b) Mucus secretion and transport in amphioxus larvae: organization and ultrastructure of the food trapping system, and implications for head evolution. Acta Zool (Stockh) 89:219–230

    Google Scholar 

  • Lacalli TC, Hou SF (1999) A reexamination of the epithelial sensory cells of amphioxus (Branchiostoma). Acta Zool Stockh 80:125–134

    Google Scholar 

  • Lacalli TC, Kelly SJ (1999) Somatic motoneurones in amphioxus larvae: cell types, cell position and innervation patterns. Acta Zool Stockh 80:113–124

    Google Scholar 

  • Lacalli TC, Kelly SJ (2000) The infundibular balance organ in amphioxus larvae and related aspects of cerebral vesicle organization. Acta Zool Stockh 81:37–47

    Google Scholar 

  • Lacalli TC, Kelly SJ (2002) Floor plate, glia and other support cells in the anterior nerve cord of amphioxus larvae. Acta Zool Stockh 83:87–98

    Google Scholar 

  • Lacalli TC, Kelly SJ (2003) Ventral neurons in the anterior nerve cord of amphioxus larvae I. An inventory of cell types and synaptic patterns. J Morphol 257:190–211

    CAS  PubMed  Google Scholar 

  • Lacalli TC, Holland ND, West JE (1994) Landmarks in the anterior central nervous system of amphioxus larvae. Phil Trans R Soc B 344:165–185

    Google Scholar 

  • Langille RM, Hall BK (1989) Developmental processes, developmental sequences and early vertebrate phylogeny. Biol Rev 64:73–91

    Google Scholar 

  • Lankester ER (1875) On some new points in the structure of amphioxus, and their bearing on the morphology of Vertebrata. Q J Microsc Sci (NS) 15:257–267

    Google Scholar 

  • Lankester ER, Willey A (1890) The development of the atrial chamber of Amphioxus. Q J Microsc Sci 31:445–466 + pl. XXIX–XXXII

    Google Scholar 

  • Lee KJ, Jessell TM (1999) The specification of dorsal cell fates in the vertebrate central nervous system. Ann Rev Neurosci 22(1):261–294. doi:10.1146/annurev.neuro.22.1.261

    CAS  PubMed  Google Scholar 

  • Legros R (1898) Développement de la cavité buccale du lAmphioxus lanceolatus: contribution a l’étude de la morphologie de la tête. Arch Anat Microsc 1:497–542 + pl. XXI–XXIII

    Google Scholar 

  • Legros R (1910) Sur quelques points de l’anatomie et du développement de l’Amphioxus, I. Sur le nephridium de Hatschek. Anat Anz 35:561–587

    Google Scholar 

  • Lichtneckert R, Reichert H (2005) Insights into the urbilaterian brain: conserved genetic patterning mechanisms in insect and vertebrate brain development. Heredity (Nature) 94:465–477

    CAS  Google Scholar 

  • Logan C, Hornbruch A, Campbell I, Lumsden A (1997) The role of Engrailed in establishing the dorsoventral axis of the chick limb. Development 124(12):2317–2324

    CAS  PubMed  Google Scholar 

  • Lu T-M, Luo Y-J, Yu J-K (2012) BMP and Delta/Notch signaling control the development of amphioxus epidermal sensory neurons: insights into the evolution of the peripheral sensory system. Development 139(11):2020–2030. doi:10.1242/dev.073833

    CAS  PubMed  Google Scholar 

  • Lwoff B (1892) Ueber einige wichtige Punkte in der Entwicklung des Amphioxus. Biol Centralbl 12:729–744

    Google Scholar 

  • Lynch JA, El-Sherif E, Brown SJ (2012) Comparisons of the embryonic development of Drosophila, Nasonia, and Tribolium. Wiley Interdiscip Rev Dev Biol 1(1):16–39. doi:10.1002/wdev.3

    CAS  PubMed  Google Scholar 

  • MacBride EW (1898) The early development of amphioxus. Q J Microsc Sci 40:589–612

    Google Scholar 

  • Mallatt J, Winchell CJ (2007) Ribosomal RNA genes and deuterostome phylogeny revisited: more cyclostomes, elasmobranchs, reptiles, and a brittle star. Mol Phylogenet Evol 43:1005–1022

    CAS  PubMed  Google Scholar 

  • Mansfield JH, Holland ND (2015) Amphioxus tails: source and fate of larval fin rays and the metamorphic transition from anectodermal to a predominantly mesodermal tail. Acta Zool 96:117–125

    Google Scholar 

  • Manzanares M, Bel-Vialar S, Ariza-McNaughton L, Ferretti E, Marshall H, Maconochie MM, Blasi F, Krumlauf R (2001) Independent regulation of initiation and maintenance phases of Hoxa3 expression in the vertebrate hindbrain involve auto- and cross-regulatory mechanisms. Development 128(18):3595–3607

    CAS  PubMed  Google Scholar 

  • Martinez-Ferre A, Martinez S (2012) Molecular regionalization of the diencephalon. Front Neurosci 6:73. doi:10.3389/fnins.2012.00073

    PubMed Central  PubMed  Google Scholar 

  • Martinez-Ferre A, Navarro-Garberi M, Bueno C, Martinez S (2013) Wnt signal specifies the intrathalamic limit and its organizer properties by regulating Shh induction in the alar plate. J Neurosci 33(9):3967–3980

    CAS  PubMed  Google Scholar 

  • Matsuura M, Nishihara H, Onimaru K, Kokubo N, Kuraku S, Kusakabe R, Okada N, Kuratani S, Tanaka M (2008) Identification of four Engrailed genes in the Japanese lamprey, Lethenteron japonicum. Dev Dyn 237(6):1581–1589. doi:10.1002/dvdy.21552

    CAS  PubMed  Google Scholar 

  • Mazet F, Shimeld S (2003) Characterisation of an amphioxus Fringe gene and the evolution of the vertebrate segmentation clock. Dev Genes Evol 213(10):505–509. doi:10.1007/s00427-003-0351-7

    CAS  PubMed  Google Scholar 

  • Mazet F, Masood S, Luke GN, Holland ND, Shimeld SM (2004) Expression of AmphiCoe, an amphioxus COE/EFB gene, in the developing central nervous system and epidermal sensory neurons. Genesis 38:58–65

    CAS  PubMed  Google Scholar 

  • McLarren KW, Litsiou A, Streit A (2003) DLX5 positions the neural crest and preplacode region at the border of the neural plate. Dev Biol 259(1):34–47. doi:http://dx.doi.org/10.1016/S0012-1606(03)00177-5

    CAS  PubMed  Google Scholar 

  • Meulemans D, Bronner-Fraser M (2004) Gene-regulatory interactions in neural crest evolution and development. Dev Cell 7:291–299

    CAS  PubMed  Google Scholar 

  • Minelli A, Fusco G (2004) Evo-devo perspectives on segmentation: model organisms, and beyond. Trends Ecol Evol 19(8):423–429. doi:http://dx.doi.org/10.1016/j.tree.2004.06.007

    PubMed  Google Scholar 

  • Minguillon C, Jimenez-Delgado S, Panopoulou G, Garcia-Fernàndez J (2003) The amphioxus Hairy family: differential fate after duplication. Development 130:5903–5913

    CAS  PubMed  Google Scholar 

  • Mizuta T, Kubokawa K (2004) Non-synchronous spawning behavior in the laboratory rearing amphioxus, Branchiostoma belcheri. J Exp Mar Biol Ecol 309:239–251

    Google Scholar 

  • Morgan TH, Hazen AP (1900) The gastrulation of amphioxus. J Morphol 16:569–600 + pl. XXXIII–XXXIV

    Google Scholar 

  • Morisawa S, Mizuta T, Kubokawa K, Tanaka H, Morisawa M (2004) Acrosome reaction in spermatozoa from the amphioxus Branchiostoma belcheri (Cephalochordata, Chordata). Zoolog Sci 11:1079–1084

    Google Scholar 

  • Nakao T (1964) On the fine structure of the amphioxus photoreceptor. Tohoku J Exp Med 82:349–369

    CAS  PubMed  Google Scholar 

  • Neal HV (1918) The history of the eye muscles. J Morphol 30:433–453

    Google Scholar 

  • Nicol D, Meinertzhagen IA (1991) Cell counts and maps in the larval central nervous system of the ascidian Ciona intestinalis (L.). J Comp Neurol 309:415–429

    CAS  PubMed  Google Scholar 

  • Nohara M, Nishida H, Miya M, Nishikawa T (2005) Evolution of the mitochondrial genome in Cephalochordata as inferred from complete nucleotide sequences from two Epigonichthys species. J Mol Evol 60:526–537

    CAS  PubMed  Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Springer, New York

    Google Scholar 

  • Olsson R (1983) Club-shaped gland and endostyle in larval Branchiostoma lanceolatum (Cephalochordata). Zoomorphology 103:1–13

    Google Scholar 

  • Onai T, Lin H-C, Schubert M, Koop D, Osborne PW, Alvarez S, Alvarez R, Holland ND, Holland LZ (2009) Retinoic acid and Wnt/β-catenin have complementary roles in anterior/posterior patterning embryos of the basal chordate amphioxus. Dev Biol 332(2):223–233. doi:http://dx.doi.org/10.1016/j.ydbio.2009.05.571

    CAS  PubMed  Google Scholar 

  • Onai T, Yu JK, Blitz IL, Cho KWY, Holland LZ (2010) Opposing Nodal/Vg1 and BMP signals mediate axial patterning in embryos of the basal chordate amphioxus. Dev Biol 344:377–389

    CAS  PubMed  Google Scholar 

  • Onai T, Akira T, Setiamarga DHE, Holland LZ (2012) Essential role of Dkk3 for head formation by inhibiting Wnt/β-catenin and Nodal/Vg1 signaling pathways in the basal chordate amphioxus. Evol Dev 14(4):338–350. doi:10.1111/j.1525-142X.2012.00552.x

    CAS  PubMed  Google Scholar 

  • Ono H, Kozmik Z, Yu J-K, Wada H (2014) A novel N-terminal motif is responsible for the evolution of neural crest-specific gene-regulatory activity in vertebrate FoxD3. Dev Biol 385(2):396–404. doi:http://dx.doi.org/10.1016/j.ydbio.2013.11.010

    CAS  PubMed  Google Scholar 

  • Osborne PW, Benoit G, Laudet V, Schubert M, Ferrier DE (2009) Differential regulation of ParaHox genes by retinoic acid in the invertebrate chordate amphioxus (Branchiostoma floridae). Dev Biol 327:252–262

    CAS  PubMed  Google Scholar 

  • Pallas PS (1774) Spicilegia Zoologica, vol 1. Fascicle 10, vol 1. G. A. Lange, Berlin

    Google Scholar 

  • Paris M, Escriva H, Schubert M, Brunet F, Brtko J, Ciesielski F, Roecklin D, Vivat-Hannah V, Jamin EL, Cravedi JP, Scanlan TS, Renaud JP, Holland ND, Laudet V (2008) Amphioxus postembryonic development reveals the homology of chordate metamorphosis. Curr Biol 18:825–830

    CAS  PubMed  Google Scholar 

  • Pascual-Anaya J, Albuixech-Crespo B, Somorjai IML, Carmona R, Oisi Y, Álvarez S, Kuratani S, Muñoz-Chápuli R, Garcia-Fernàndez J (2013) The evolutionary origins of chordate hematopoiesis and vertebrate endothelia. Dev Biol 375(2):182–192. doi:http://dx.doi.org/10.1016/j.ydbio.2012.11.015

    CAS  PubMed  Google Scholar 

  • Patel NH, Ball EE, Goodman CS (1992) Changing role of even-skipped during the evolution of insect pattern formation. Nature 357(6376):339–342

    CAS  PubMed  Google Scholar 

  • Patthey C, Schlosser G, Shimeld SM (2014) The evolutionary history of vertebrate cranial placodes – I: cell type evolution. Dev Biol 389:82–97. doi:http://dx.doi.org/10.1016/j.ydbio.2014.01.017

  • Pedersen L, Jensen MH, Krishna S (2011) Dickkopf1–a new player in modelling the Wnt pathway. PLoS One 6:e25550. doi:10.1371/journal.pone.0025550

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peel AD (2008) The evolution of developmental gene networks: lessons from comparative studies on holometabolous insects. Phil Trans R Soc B Biol Sci 363(1496):1539–1547. doi:10.1098/rstb.2007.2244

    Google Scholar 

  • Pendleton JW, Nagai BK, Murtha MT, Ruddle FH (1993) Expansion of the Hox gene family and the evolution of chordates. Proc Natl Acad Sci U S A 90(13):6300–6304

    CAS  PubMed Central  PubMed  Google Scholar 

  • Prud’homme B, de Rosa R, Arendt D, Julien J-F, Pajaziti R, Dorresteijn AWC, Adoutte A, Wittbrodt J, Balavoine G (2003) Arthropod-like expression patterns of engrailed and wingless in the annelid Platynereis dumerilii suggest a role in segment formation. Curr Biol 13(21):1876–1881. doi:http://dx.doi.org/10.1016/j.cub.2003.10.006

    PubMed  Google Scholar 

  • Pulido C, Malagón G, Ferrer C, Chen JK, Angueyra JM, Nasi E, Gomez MP (2012) The light-sensitive conductance of melanopsin-expressing Joseph and Hesse cells in amphioxus. J Gen Physiol 139(1):19–30. doi:10.1085/jgp.201110717

    CAS  PubMed Central  PubMed  Google Scholar 

  • Purcell P, Oliver G, Mardon G, Donner AL, Maas RL (2005) Pax6-dependence of Six3, Eya1 and Dach1 expression during lens and nasal placode induction. Gene Expr Patterns 6(1):110–118. doi:http://dx.doi.org/10.1016/j.modgep.2005.04.010

    CAS  PubMed  Google Scholar 

  • Putnam NH, Butts T, Ferrier DEK, Furlong RF, Hellsten U, Kawashima T, Robinson-Rechavi M, Shoguchi E, Terry A, Yu J-K, Benito-Gutierrez E, Dubchak I, Garcia-Fernandez J, Gibson-Brown JJ, Grigoriev IV, Horton AC, de Jong PJ, Jurka J, Kapitonov VV, Kohara Y, Kuroki Y, Lindquist E, Lucas S, Osoegawa K, Pennacchio LA, Salamov AA, Satou Y, Sauka-Spengler T, Schmutz J, Shin-I T, Toyoda A, Bronner-Fraser M, Fujiyama A, Holland LZ, Holland PWH, Satoh N, Rokhsar DS (2008) The amphioxus genome and the evolution of the chordate karyotype. Nature 453(7198):1064–1071. doi:http://www.nature.com/nature/journal/v453/n7198/suppinfo/nature06967_S1.html

    CAS  PubMed  Google Scholar 

  • Rahr H (1981) The ultrastructure of the blood vessels of Branchiostoma lanceolatum (Pallas) (Cephalochordata. I. Relations between blood vessels, epithelia, basal laminae, and “connective tissue”. Zoomorphology 97:53–74

    Google Scholar 

  • Rasmussen SLK, Holland LZ, Schubert M, Beaster-Jones L, Holland ND (2007) Amphioxus AmphiDelta: evolution of delta protein structure, segmentation, and neurogenesis. Genesis 45(3):113–122. doi:10.1002/dvg.20278

    CAS  PubMed  Google Scholar 

  • Reichert H, Simeone A (2001) Developmental genetic evidence for a monophyletic origin of the bilaterian brain. Phil Trans R Soc B Biol Sci 356(1414):1533–1544. doi:10.1098/rstb.2001.0972

    CAS  Google Scholar 

  • Reichert S, Randall RA, Hill CS (2013) A BMP regulatory network controls ectodermal cell fate decisions at the neural plate border. Development 140(21):4435–4444. doi:10.1242/dev.098707

    CAS  PubMed  Google Scholar 

  • Romer AS (1962) The vertebrate body, 3rd edn. W. B Saunders, Philadelphia

    Google Scholar 

  • Ruppert EE (1996) Morphology of Hatschek’s nephridium in larval and juvenile stages of Branchiostoma virginiae (Cephalochordata). Isr J Zool 42(Suppl):161–182

    Google Scholar 

  • Samassa P (1898) Studien über den Einfluss des Dotters auf die Gastrulation und die Bildung der primären Keimblätter der Wirbelthiere. IV. Amphioxus. Arch Entwicklungsmech 7:1–33 + pl. I–III

    Google Scholar 

  • Sambasivan R, Kuratani S, Tajbakhsh S (2011) An eye on the head: the development and evolution of craniofacial muscles. Development 138(12):2401–2415. doi:10.1242/dev.040972

    CAS  PubMed  Google Scholar 

  • Sánchez-Arrones L, Ferrán JL, Rodríguez-Gallardo L, Puelles L (2009) Incipient forebrain boundaries traced by differential gene expression and fate mapping in the chick neural plate. Dev Biol 335(1):43–65. doi:http://dx.doi.org/10.1016/j.ydbio.2009.08.012

    PubMed  Google Scholar 

  • Sanetra M, Begemann G, Becker MB, Meyer A (2005) Conservation and co-option in developmental programmes: the importance of homology relationships. Front Zool 10(2):15

    Google Scholar 

  • Satoh G, Wang Y, Zhang PJ, Satoh N (2001) Early development of amphioxus nervous system with special reference to segmental cell organization and putative sensory cell precursors: a study based on the expression of pan-neuronal marker gene Hu/elav. J Exp Zool 291:354–364

    Google Scholar 

  • Schlosser G, Patthey C, Shimeld SM (2014) The evolutionary history of vertebrate cranial placodes II. Evolution of ectodermal patterning. Dev Biol 389:98–119. piis0012-1606(14) 00047-5. doi:http://dx.doi.org/10.1016/j.ydbio.2014.01.019

    CAS  PubMed  Google Scholar 

  • Scholpp S, Foucher I, Staudt N, Peukert D, Lumsden A, Houart C (2007) Otx1, Otx2 and Irx1b establish and position the ZLI in the diencephalon. Development 134(17):3167–3176. doi:10.1242/dev.001461

    CAS  PubMed  Google Scholar 

  • Schubert M, Holland LZ, Panopoulou GD, Lehrach H, Holland ND (2000) Characterization of amphioxus AmphiWnt8: insights into the evolution of patterning of the embryonic dorsoventral axis. Evol Dev 2(2):85–92. doi:10.1046/j.1525-142x.2000.00047.x

    CAS  PubMed  Google Scholar 

  • Schubert M, Holland ND, Laudet V, Holland LZ (2006) A retinoic acid-Hox hierarchy controls both anterior/posterior patterning and neuronal specification in the developing central nervous system of the cephalochordate amphioxus. Dev Biol 296:190–202

    CAS  PubMed  Google Scholar 

  • Seaver EC, Kaneshige LM (2006) Expression of ‘segmentation’ genes during larval and juvenile development in the polychaetes Capitella sp. I and H. elegans. Dev Biol 289(1):179–194. doi:http://dx.doi.org/10.1016/j.ydbio.2005.10.025

    CAS  PubMed  Google Scholar 

  • Seaver EC, Paulson DA, Irvine SQ, Martindale MQ (2001) The spatial and temporal expression of Ch-en, the engrailed gene in the polychaete Chaetopterus, does not support a role in body axis segmentation. Dev Biol 236(1):195–209. doi:http://dx.doi.org/10.1006/dbio.2001.0309

    CAS  PubMed  Google Scholar 

  • Seaver EC, Yamaguchi E, Richards GS, Meyer NP (2012) Expression of the pair-rule gene homologs runt, Pax3/7, even-skipped-1 and even-skipped-2 during larval and juvenile development of the polychaete annelid Capitella teleta does not support a role in segmentation. EvoDevo 3:8. doi:10.1186/2041-9139-3-8

    CAS  PubMed Central  PubMed  Google Scholar 

  • Seredick SD, Ryswyk L, Hutchinson SA, Eisen JS (2012) Zebrafish Mnx proteins specify one motoneuron subtype and suppress acquisition of interneuron characteristics. Neural Dev 7:35

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sharman AC, Shimeld SM, Holland PWH (1999) An amphioxus Msx gene expressed predominantly in the dorsal neural tube. Dev Genes Evol 209:260–263

    CAS  PubMed  Google Scholar 

  • Shimamura K, Rubenstein JL (1997) Inductive interactions direct early regionalization of the mouse forebrain. Development 124(14):2709–2718

    CAS  PubMed  Google Scholar 

  • Shimeld SM (1999) The evolution of the hedgehog gene family in chordates: insights from amphioxus hedgehog. Dev Genes Evol 209(1):40–47. doi:10.1007/s004270050225

    CAS  PubMed  Google Scholar 

  • Shimeld SM, van den Heuvel M, Dawber R, Briscoe J (2007) An amphioxus Gli gene reveals conservation of midline patterning and the evolution of hedgehog signalling diversity in chordates. PLoS One 2(9):e864. doi:10.1371/journal.pone.0000864

    PubMed Central  PubMed  Google Scholar 

  • Sjödal M, Gunhaga L (2008) Expression patterns of Shh, Ptc2, Raldh3, Pitx2, Isl1, Lim3 and Pax6 in the developing chick hypophyseal placode and Rathke’s pouch. Gene Expr Patterns 8(7–8):481–485. doi:http://dx.doi.org/10.1016/j.gep.2008.06.007

    PubMed  Google Scholar 

  • Sobotta J (1895) Die Befruchtung des Eies von Amphioxus lanceolatus; vorlaufige Mitteilung. Anat Anz 11:129–137

    Google Scholar 

  • Sobotta J (1897a) Beobachtungen über den Gastrulationsvorgang beim Amphioxus. Verh Phys Med Ges Wurzburg 31:101–121 + pl. 101

    Google Scholar 

  • Sobotta J (1897b) Die Reifung und Befruchtung des Eies von Amphioxus lanceolatus. Arch Mikrosk Anat 50:15–71 + pl. II–V

    Google Scholar 

  • Somorjai IML, Somorjai RL, Garcia-Fernàndez J, Escrivà H (2012) Vertebrate-like regeneration in the invertebrate chordate amphioxus. Proc Natl Acad Sci 109(2):517–522. doi:10.1073/pnas.1100045109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stieda L (1873) Studien über den Amphioxus lanceolatus. Mem Acad Imp Sci St Petersbourg (ser VII) 19(7):1–70 + pl.I−IV

    Google Scholar 

  • Stokes MD (1996) Larval settlement, post-settlement growth and secondary production of the Florida lancelet (=amphioxus), Branchiostoma floridae. Mar Ecol Prog Ser 130:71–84

    Google Scholar 

  • Stokes MD, Holland ND (1995a) Ciliary hovering in larval lancelets (= amphioxus). Biol Bull 188:231–233

    Google Scholar 

  • Stokes MD, Holland ND (1995b) Embryos and larvae of a lancelet, Branchiostoma floridae, from hatching through metamorphosis–growth in the laboratory and external morphology. Acta Zool Stockh 76:105–120

    Google Scholar 

  • Stokes MD, Holland ND (1996) Reproduction of the Florida lancelet (Branchiostoma floridae): spawning patterns and fluctuations in gonad indexes and nutritional reserves. Invertebr Biol 115:349–359

    Google Scholar 

  • Strausfeld NJ (2010) Brain homology: dohrn of a new era. Brain Behav Evol 76:165–167

    Google Scholar 

  • Strausfeld NJ, Hirth F (2013) Deep homology of arthropod central complex and vertebrate basal ganglia. Science 340(6129):157–161. doi:10.1126/science.1231828

    CAS  PubMed  Google Scholar 

  • Stricht O van der (1896) La maturation et la fécondation de l’oeuf d’Amphioxus lanceolatus. Arch Biol 14:469–495 + pl. XX–XXI

    Google Scholar 

  • Sunmonu NA, Li K, Guo Q, Li JYH (2011) Gbx2 and Fgf8 are sequentially required for formation of the midbrain-hindbrain compartment boundary. Development 138(4):725–734. doi:10.1242/dev.055665

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tomer R, Denes AS, Tessmar-Raible K, Arendt D (2010) Profiling by image registration reveals common origin of annelid mushroom bodies and vertebrate pallium. Cell 142(5):800–809. doi:http://dx.doi.org/10.1016/j.cell.2010.07.043

    CAS  PubMed  Google Scholar 

  • Toresson H, Martinez-Barbera JP, Bardsley A, Caubit X, Krauss S (1998) Conservation of BF-1 expression in amphioxus and zebrafish suggests evolutionary ancestry of anterior cell types that contribute to the vertebrate telencephalon. Dev Genes Evol 208(8):431–439. doi:10.1007/s004270050200

    CAS  PubMed  Google Scholar 

  • Tosches MA, Arendt D (2013) The bilaterian forebrain: an evolutionary chimaera. Curr Opin Neurobiol 23(6):1080–1089. doi:http://dx.doi.org/10.1016/j.conb.2013.09.005

    CAS  PubMed  Google Scholar 

  • Tossell K, Kiecker C, Wizenmann A, Lang E, Irving C (2011) Notch signalling stabilises boundary formation at the midbrain-hindbrain organiser. Development 138(17):3745–3757. doi:10.1242/dev.070318

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tung TC, Wu SC, Tung YFY (1958) The development of isolated blastomeres of amphioxus. Sci Sin 7:1280–1320

    CAS  PubMed  Google Scholar 

  • Tung TC, Wu SC, Tung YYF (1960) The developmental potencies of the blastomere layers in Amphioxus egg at the 32-cell stage. Sci Sin 9:119–141

    CAS  PubMed  Google Scholar 

  • Tung TC, Wu SC, Tung YYF (1962a) Experimental studies on the neural induction in amphioxus. Sci Sin 11:805–820

    Google Scholar 

  • Tung TC, Wu SC, Tung YYF (1962b) The presumptive areas of the egg of amphioxus. Sci Sin 11:629–644

    Google Scholar 

  • Urbach R, Technau G (2008) Dorsoventral patterning of the brain: a comparative approach. In: Technau G (ed) Brain development in Drosophila melanogaster, vol 628, Advances in Experimental Medicine and Biology. Springer, New York, pp 42–56. doi:10.1007/978-0-387-78261-4_3

    Google Scholar 

  • Wagner GP (2007) The developmental genetics of homology. Nat Rev Genet 8(6):473–479

    CAS  PubMed  Google Scholar 

  • Wassef M, Joyner AL (1997) Early mesencephalon/metencephalon patterning and development of the cerebellum. Perspect Dev Neurobiol 5(1):3–16

    CAS  PubMed  Google Scholar 

  • Welsch U (1968) Die Feinstruktur der Josephschen Zellen im Gehirn von Amphioxus. Z Zellsorsch 86:252–261

    CAS  Google Scholar 

  • Welsch U (1975) The fine structure of the pharynx, cyrtopodocytes and digestive caecum of amphioxus (Branchiostoma lanceolatum). Symp Zool Soc Lond 36:17–41

    Google Scholar 

  • Wicht H, Lacalli TC (2005) The nervous system of amphioxus: structure, development, and evolutionary significance. Can J Zool 83:122–150

    Google Scholar 

  • Wijhe WJ van (1893) Ueber Amphioxus. Anatom Anz 8:152–172

    Google Scholar 

  • Wijhe WJ van (1907) Beiträge zur Anatomie der Kopfregion des Amphioxus lanceolatus. Petrus Camper Anatomische Beiträge hrsg. von L. Bolk und C. Winkler, 1:109–194 + pl. VIII–XI

    Google Scholar 

  • Willey A (1891) On the development of the atrial chamber in amphioxus. Proc R Soc 48:80–89

    Google Scholar 

  • Willey A (1894) Amphioxus and the ancestry of the vertebrates. MacMillan, New York

    Google Scholar 

  • Williams NA, Holland PWH (1996) Old head on young shoulders. Nature 383:490, only

    CAS  Google Scholar 

  • Wilson EB (1893) Amphioxus, and the mosaic theory of development. J Morphol 8:579–639 + pl. XXIX–XXXVIII

    Google Scholar 

  • Winchell CJ, Sillivan J, Cameron CB, Swalla BJ, Mallatt J (2002) Evaluating hypotheses of deuterostome phylogeny and chordate evolution with new LSU and SSU ribosomal DNA data. Mol Biol Evol 19:762–776

    CAS  PubMed  Google Scholar 

  • Wright AA (1890) Amphioxus in Tampa Bay. Am Nat 24:1085

    Google Scholar 

  • Wu SC (1986) The early development of Amphioxus. In: Ganguan Z (ed) Advances in science of China, vol I, Biology. Wiley, New York, pp 231–266

    Google Scholar 

  • Wu XH, Zhang BL, Guo ZY, Qu YM (2000a) Laboratory culture of the amphioxus (Branchiostoma belcheri tsingtauense)–effects of food and sand on larvae survival. Chinese J Oceanol Limnol 18:134–136

    Google Scholar 

  • Wu XH, Zhang BL, Guo ZY, Qu YM (2000b) Artificial culture of amphioxus (Branchiostoma belcheri tsingtauense). Chinese J Oceanol Limnol 18:334–337

    Google Scholar 

  • Wu HR, Wu HR, Chen YT, Su YH, Luo YJ, Holland LZ, Yu JK (2011) Asymmetric localization of germline markers Vasa and Nanos during early development in the amphioxus Branchiostoma floridae. Dev Biol 353:147–159

    CAS  PubMed  Google Scholar 

  • Yamaguchi T, Henmi Y (2003) Biology of the amphioxus, Branchiostoma belcheri in the Ariake Sea, Japan. II. Reproduction. Zoolog Sci 20:907–918

    PubMed  Google Scholar 

  • Yang L, Zhang H, Hu G, Wang H, Abate-Shen C, Shen MM (1998) An early phase of embryonic Dlx5 expression defines the rostral boundary of the neural plate. J Neurosci 18(20):8322–8330

    CAS  PubMed  Google Scholar 

  • Yarrell W (1836) A history of British fishes (Edition I), Volume 1, vol II. J. Van Voorst, London

    Google Scholar 

  • Yasui K, Zhang SC, Uemura M, Saiga H (2000) Left-right asymmetric expression of BbPtx, a Ptx-related gene, in a lancelet species and the developmental left-sidedness of deuterostomes. Development 127:187–195

    CAS  PubMed  Google Scholar 

  • Yasui K, Urata M, Yamaguchi M, Ueda H, Henmi Y (2007) Laboratory culture of the oriental lancelet Branchiostoma belcheri. Zoolog Sci 24:514–520

    PubMed  Google Scholar 

  • Yasui K, Igawa T, Kaji T, Henmi Y (2013) Stable aquaculture of the Japanese lancelet Branchiostoma japonicum for 7 years. J Exp Zool 320B(8):538–547. doi:10.1002/jez.b.22540

    Google Scholar 

  • Yu JK, Holland ND, Holland LZ (2002) An amphioxus winged helix/forkhead gene, AmphiFoxD: insights into vertebrate neural crest evolution. Dev Dyn 225:289–297

    CAS  PubMed  Google Scholar 

  • Yu JK, Holland ND, Holland LZ (2004) Tissue-specific expression of FoxD reporter constructs in amphioxus embryos. Dev Biol 274:452–461

    CAS  PubMed  Google Scholar 

  • Yu J-K, Satou Y, Holland ND, Shin-I T, Kohara Y, Satoh N, Bronner-Fraser M, Holland LZ (2007) Axial patterning in cephalochordates and the evolution of the organizer. Nature 445(7128):613–617. doi:http://www.nature.com/nature/journal/v445/n7128/suppinfo/nature05472_S1.html

    CAS  PubMed  Google Scholar 

  • Yu J-K, Meulemans D, McKeown SJ, Bronner-Fraser M (2008a) Insights from the amphioxus genome on the origin of vertebrate neural crest. Genome Res 18(7):1127–1132. doi:10.1101/gr.076208.108

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yu JK, Wang MC, Shin-I T, Kohara Y, Holland LZ, Satoh N, Satou Y (2008b) A cDNA resource for the cephalochordate amphioxus Branchiostoma floridae. Dev Genes Evol 218:723–727

    CAS  PubMed  Google Scholar 

  • Zhang Y, Mao B (2010) Embryonic expression and evolutionary analysis of the amphioxus Dickkopf and Kremen family genes. J Genet Genom 37(9):637–645. doi:http://dx.doi.org/10.1016/S1673-8527(09)60082-5

    CAS  Google Scholar 

  • Zhang SC, Holland ND, Holland LZ (1997) Topographic changes in nascent and early mesoderm in amphioxus embryos studied by DiI labeling and by in situ hybridization for a Brachyury gene. Dev Genes Evol 206:532–535

    Google Scholar 

  • Zhang QJ, Luo YJ, Wu HR, Chen YT, Yu JK (2013) Expression of germline markers in three species of amphioxus supports a preformation mechanism of germ cell development in cephalochordates. EvoDevo 4:17

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

I thank N.D. Holland for his critical reading of the manuscript and Greg Rouse for the photographs of Asymmetron lucayanum in Fig. 3.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda Z. Holland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Wien

About this chapter

Cite this chapter

Holland, L.Z. (2015). Cephalochordata. In: Wanninger, A. (eds) Evolutionary Developmental Biology of Invertebrates 6. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1856-6_3

Download citation

Publish with us

Policies and ethics