Skip to main content

Diversity and History as Drivers of Helminth Systematics and Biology

  • Chapter
  • First Online:
Helminth Infections and their Impact on Global Public Health

Abstract

Over the years, we have come to recognize that evolution is a dynamic process and a fundamental organizing principle for exploring diversity and the biosphere. Basic knowledge of systematics and phylogenetics within an evolutionary context is essential for gaining a flexible understanding of contemporary parasite diversity and developmental pathways and how these are influenced by environmental perturbation and anthropogenic forcing. Further, an appreciation for historical processes as determinants of modern day geographic patterns and host associations is needed to explore the outcomes of environmental perturbation on parasite evolution. Collectively, these data lead to better predictive capacity for future changes in the distribution patterns and roles that parasites play in animal and human health. In this chapter we highlight how insights from the past and knowledge of current parasite assemblages expose the impacts that accelerated climate warming, habitat perturbation, erosion of biodiversity, and changes in host adaptation have had on the ebb and flow of zoonotic infectious diseases. We further look at how molecular and biochemical studies have advanced systematics, taxonomic stability, and diagnostic capability and are guiding future progress toward understanding parasites, parasitism, and their relationships to global public health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agosta SJ, Janz N, Brooks DR (2010) How generalists can be specialists: resolving the “parasite paradox” and implications for emerging disease. Zoologia 27:151–162

    Google Scholar 

  • Ashford RW, Crewe W (2003) The parasites of Homo sapiens: an annotated checklist of the protozoa, helminths and arthropods for which we are home, 2nd edn. Taylor and Francis, New York, NY

    Google Scholar 

  • Attwood SW, Fatih FA, Mondal MM, Alim MA, Fadjar S, Rajapakse RP, Rollinson D (2007) A DNA sequence-based study of the Schistosoma indicum (Trematoda: Digenea) group: population phylogeny, taxonomy and historical biogeography. Parasitology 134:2009–2020

    CAS  PubMed  Google Scholar 

  • Audy JR (1958) The localization of disease with special reference to zoonoses. Trans R Soc Trop Med Hyg 52:309–328

    Google Scholar 

  • Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Berriman M, Haas BJ, LoVerde PT et al (2009) The genome of the blood fluke Schistosoma mansoni. Nature 460:352–358

    CAS  PubMed Central  PubMed  Google Scholar 

  • Betson M, Halstead FD, Nejsum P, Imison E, Khamis IS, Sousa-Figueiredo JC, Rollinson D, Stothard JR (2011) A molecular epidemiological investigation of Ascaris on Unguja, Zanzibar using isoenyzme analysis, DNA barcoding and microsatellite DNA profiling. Trans R Soc Trop Med Hyg 105:370–379

    CAS  PubMed  Google Scholar 

  • Blanton RE, Blank WA, Costa JM, Carmo TM, Reis EA, Silva LK, Barbosa LM, Test MR, Reis MG (2011) Schistosoma mansoni population structure and persistence after praziquantel treatment in two villages of Bahia, Brazil. Int J Parasitol 41:1093–1099

    PubMed Central  PubMed  Google Scholar 

  • Blaxter ML, De Ley P, Garey JR, Liu LX, Scheldeman P, Vierstraete A, Vanfleteren JR, Mackey LY, Dorris M, Frisse LM, Vida JT, Thomas WK (1998) A molecular evolutionary framework for the phylum Nematoda. Nature 392:71–75

    CAS  PubMed  Google Scholar 

  • Blaxter M, Kumar S, Kaur G, Koutsovoulos G, Elsworth B (2012) Genomics and transcriptomics across the diversity of the Nematoda. Parasite Immunol 34:108–120

    CAS  PubMed  Google Scholar 

  • Brooks DR, Ferrao A (2005) The historical biogeography of coevolution: emerging infectious diseases are evolutionary accidents waiting to happen. J Biogeogr 32:1291–1299

    Google Scholar 

  • Brooks DR, Hoberg EP (2007) How will global climate change affect parasite-host assemblages? Trends Parasitol 23:571–574

    PubMed  Google Scholar 

  • Brooks DR, Hoberg EP (2013) The emerging infectious disease crisis and pathogen pollution: a question of ecology and evolution. In: Rohde K (ed) The balance of nature and human impact. Cambridge University Press, Cambridge, MA, pp 215–229

    Google Scholar 

  • Brooks DR, McLennan DA (1993) Parascript: parasites and the language of evolution. Smithsonian Institution Press, Washington, DC

    Google Scholar 

  • Brooks DR, McLennan DA (2002) The nature of diversity: an evolutionary voyage of discovery. University of Chicago Press, Chicago

    Google Scholar 

  • Caffrey CR, Rohwer A, Oellien F, Marhöfer RJ, Braschi S, Oliveira G, McKerrow JH, Selzer PM (2009) A comparative chemogenomics strategy to predict potential drug targets in the metazoan pathogen, Schistosoma mansoni. PLoS One 4:e4413

    PubMed Central  PubMed  Google Scholar 

  • Castagnone-Sereno P, Danchin EGJ, Deleury E, Guillemaud T, Malausa T, Abad P (2010) Genome-wide survey and analysis of microsatellites in nematodes, with a focus on the plant-parasitic species Meloidogyne incognita. BMC Genomics 11:598

    PubMed Central  PubMed  Google Scholar 

  • Cleaveland S, Laurenson MK, Taylor LH (2001) Diseases of humans and their domestic mammals: pathogen characteristics, host range and the risk of emergence. Philos Trans R Soc Lond B Biol Sci 356:991–999

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coles GC (1970) A comparison of some isoenyzmes of Schistosoma mansoni and Schistosoma haematobium. Comp Biochem Physiol 33:549–558

    CAS  PubMed  Google Scholar 

  • Cook JA, Brochman C, Talbot SL, Fedorov VB, Taylor EB, Väinölä R, Hoberg EP, Kholodova M, Magnussun KP, Mustonen T (2013) Genetics. In: Meltofte H (ed) Arctic biodiversity assessment. Arctic Council, Convention for Arctic Flora and Fauna, Kiruna, Sweden, pp 515–539

    Google Scholar 

  • Copley RR, Aloy P, Russell RB, Telford MJ (2004) Systematic searches for molecular synapomorphies in model metazoan genomes give some support for Ecdysozoa after accounting for the idiosyncrasies of Caenorhabditis elegans. Evol Dev 6:164–169

    CAS  PubMed  Google Scholar 

  • Criscione CD, Poulin R, Blouin MS (2005) Molecular ecology of parasites: elucidating ecological and microevolutionary processes. Mol Ecol 14:2247–2257

    CAS  PubMed  Google Scholar 

  • Criscione CD, Anderson JD, Sudimack D, Peng W, Jha B, Williams-Blangero S, Anderson TJC (2007) Disentangling hybridization and host colonization in parasitic roundworms of humans and pigs. Proc R Soc B Biol Sci 274:2669–2677

    CAS  Google Scholar 

  • Criscione CD, Valentim CLL, Hirai H, LoVerde PT, Anderson TJC (2009) Genomic linkage map of the human blood fluke Schistosoma mansoni. Genome Biol 10:R71

    PubMed Central  PubMed  Google Scholar 

  • Daszak P, Cunningham AA, Hyatt AD (2000) Emerging infectious diseases of wildlife: threats to biodiversity and human health. Science 287:443–449

    CAS  PubMed  Google Scholar 

  • Davis GM (1993) Evolution of prosobranch snails transmitting Asian Schistosoma; coevolution with Schistosoma: a review. Prog Clin Parasitol 3:145–204

    CAS  PubMed  Google Scholar 

  • De Ley P, Blaxter ML (2002) Systematic position and phylogeny. In: Lee DL (ed) The biology of nematodes. Taylor and Francis, London, pp 1–30

    Google Scholar 

  • De Ley P, Blaxter ML (2004) A new system for Nematoda: combining morphological characters with molecular trees, and translating clades into ranks and taxa. In: Cook R, Hunt DJ (eds) Nematology monographs and perspectives, vol 2. EJ Brill, Leiden, pp 633–653

    Google Scholar 

  • Dean FB, Hosono S, Fang LH et al (2002) Comprehensive human genome amplification using multiple displacement amplification. Proc Natl Acad Sci USA 99:5261–5266

    CAS  PubMed Central  PubMed  Google Scholar 

  • Delsuc F, Brinkmann H, Philippe H (2005) Phylogenomics and the reconstruction of the tree of life. Nat Rev Genet 6:361–375

    CAS  PubMed  Google Scholar 

  • Detwiler JT, Criscione CD (2010) An infectious topic in reticulate evolution: introgression and hybridization in animal parasites. Genes 1:102–123

    CAS  PubMed Central  PubMed  Google Scholar 

  • Devi KR, Narain K, Mahanta J, Nirmolia T, Blair D, Saikia SP, Agatsuma T (2013) Presence of three distinct genotypes within the Paragonimus westermani complex in northeastern India. Parasitology 140:76–86

    Google Scholar 

  • Dobson A, Lafferty KD, Kuris AM, Hechinge RF, Jetz W (2008) Homage to Linnaeus: how many parasites? How many hosts? Proc Natl Acad Sci 105:11482–11489

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dopazo H, Dopazo J (2005) Genome-scale evidence of the nematode-arthropod clade. Genome Biol 6:R41

    PubMed Central  PubMed  Google Scholar 

  • Dopazo H, Santoyo J, Dopazo J (2004) Phylogenomics and the number of characters required for obtaining an accurate phylogeny of eukaryote model species. Bioinformatics 20(suppl 1):I116–I121

    CAS  PubMed  Google Scholar 

  • Dunams-Morel DB, Reichard MV, Torretti L, Zarlenga DS, Rosenthal BM (2012) Discernible but limited introgression has occurred where Trichinella nativa and the T6 genotype occur in sympatry. Infect Genet Evol 12:530–538

    CAS  PubMed  Google Scholar 

  • Edwards SV (2009) Is a new and general theory of molecular systematics emerging? Evolution 63:1–19

    CAS  PubMed  Google Scholar 

  • Eisen JA (1998) Phylogenomics: improving functional predictions for uncharacterized genes by evolutionary analysis. Genome Res 8:163–167

    CAS  PubMed  Google Scholar 

  • Eisen JA, Fraser CM (2003) Phylogenomics: intersection of evolution and genomics. Science 300:1706–1707

    CAS  PubMed  Google Scholar 

  • Excoffier L, Heckel G (2006) Computer programs for population genetics data analysis: a survival guide. Nat Rev Genet 7:745–758

    CAS  PubMed  Google Scholar 

  • Flockhart HA, Harrison SE, Dobinson AR, James ER (1982) Enzyme polymorphism in Trichinella. Trans R Soc Trop Med Hyg 76:541–545

    CAS  PubMed  Google Scholar 

  • Folinsbee KE, Brooks DR (2007) Early hominid biogeography: pulses of dispersal and differentiation. J Biogeogr 43:383–397

    Google Scholar 

  • Foxman B, Riley L (2001) Molecular epidemiology: focus on infection. Am J Epidemiol 153:1135–1141

    CAS  PubMed  Google Scholar 

  • Ghedin E, Wang S, Spiro D et al (2007) Draft genome of the filarial nematode parasite Brugia malayi. Science 317:1756–1760

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ghiselin MT (1974) A radical solution to the species problem. Syst Zool 23:536–544

    Google Scholar 

  • Gorton MJ, Kasl EL, Detwiler JT, Criscione CD (2012) Testing local-scale panmixia provides insights into the cryptic ecology, evolution, and epidemiology of metazoan animal parasites. Parasitology 139:981–997

    PubMed  Google Scholar 

  • Harcourt AH (2012) Human biogeography. University of California Press, Berkeley, CA

    Google Scholar 

  • Hawdon JM, Johnston SA (1996) Hookworms in the Americas: an alternative to trans-Pacific contact. Parasitol Today 12:72–74

    CAS  PubMed  Google Scholar 

  • Heizer E, Zarlenga DS, Rosa B, Gao X, Gasser RB, De Graef J, Geldhof P, Mitreva M (2013) Transcriptome analyses reveal protein and domain families that delineate stage-related development in the economically important parasitic nematodes, Ostertagia ostertagi and Cooperia oncophora. BMC Genomics 14:118

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hoberg EP (1997) Phylogeny and historical reconstruction: host parasite systems as keystones in biogeography and ecology. In: Reaka-Kudla M, Wilson EO, Wilson D (eds) Biodiversity II: understanding and protecting our resources. Joseph Henry Press, National Academy of Sciences, Washington, DC, pp 243–261

    Google Scholar 

  • Hoberg EP (2006) Phylogeny of Taenia: defining species and origins of human parasites. Parasitol Int 50:S23–S30

    Google Scholar 

  • Hoberg EP (2010) Invasive processes, mosaics and the structure of helminth parasite faunas. Rev Sci Tech 29:255–272

    CAS  PubMed  Google Scholar 

  • Hoberg EP, Brooks DR (2008) A macroevolutionary mosaic: episodic host-switching, geographic colonization, and diversification in complex host-parasite systems. J Biogeogr 35:1533–1550

    Google Scholar 

  • Hoberg EP, Brooks DR (2010) Beyond vicariance: integrating taxon pulses, ecological fitting and oscillation in historical biogeography and evolution. In: Morand S, Krasnov B (eds) The geography of host-parasite interactions. Oxford University Press, Oxford, pp p7–p20

    Google Scholar 

  • Hoberg EP, Brooks DR (2013) Episodic processes, invasion, and faunal mosaics in evolutionary and ecological time. In: Rohde K (ed) The balance of nature and human Impact. Cambridge University Press, Cambridge, MA, pp 199–213

    Google Scholar 

  • Hoberg EP, Alkire NL, de Queiroz A, Jones A (2001) Out of Africa: origins of the Taenia tapeworms in humans. Proc R Soc Lond B Biol Sci 268:781–787

    CAS  Google Scholar 

  • Hoberg EP, Galbreath KE, Cook JA, Kutz SJ, Polley L (2012) Northern host-parasite assemblages: history and biogeography on the borderlands of episodic climate and environmental transition. Adv Parasitol 79:1–97

    PubMed  Google Scholar 

  • Holterman M, van der Wurff A, van den Elsen S, van Megen H, Bongers T, Holovachov O, Bakker J, Helder J (2006) Phylum-wide analysis of SSU rDNA reveals deep phylogenetic relationships among nematodes and accelerated evolution toward crown Clades. Mol Biol Evol 23:1792–1800

    CAS  PubMed  Google Scholar 

  • Huyse T, Poulin R, Théron A (2005) Speciation in parasites: a population genetics approach. Trends Parasitol 21:469–475

    PubMed  Google Scholar 

  • Jeffroy O, Brinkmann H, Delsuc F, Philippe H (2006) Phylogenomics: the beginning of incongruence? Trends Genet 22:225–231

    CAS  PubMed  Google Scholar 

  • Jenkins E, Castrodale L, de Rosemond S, Dixon B, Elmore S, Gesy K, Hoberg E, Polley L, Schurer J, Simard M, Thompson RCA (2013) Tradition and transition: parasitic zoonoses of people and animals in Alaska, northern Canada and Greenland. Adv Parasitol 82:33–204

    PubMed  Google Scholar 

  • Jex AR, Liu S, Li B et al (2011) Ascaris suum draft genome. Nature 479:529–533

    CAS  PubMed  Google Scholar 

  • Keiser J, Utzinger J (2010) The drugs we have and the drugs we need against major helminth infections. Adv Parasitol 73:197–230

    PubMed  Google Scholar 

  • Korbel JO, Snel B, Huynen MA, Bork P (2002) SHOT: a web server for the construction of genome phylogenies. Trends Genet 18:158–162

    CAS  PubMed  Google Scholar 

  • Kuris AM (2012) The global burden of human parasites: who and where are they? How are they transmitted? J Parasitol 98:1056–1064

    PubMed  Google Scholar 

  • Kuris AM, Hechinger RF, Shaw JC et al (2008) Ecosystem energetic implications of parasite and free-living biomass in three estuaries. Nature 454:515–518

    CAS  PubMed  Google Scholar 

  • La Rosa G, Marucci G, Zarlenga DS, Casulli A, Zarnke RL, Pozio E (2003) Molecular identification of natural hybrids between Trichinella nativa and Trichinella T6 provides evidence of gene flow and ongoing genetic divergence. Int J Parasitol 33:209–216

    PubMed  Google Scholar 

  • Lafferty KD, Allesina S, Arim M et al (2008) Parasites in foodwebs: the ultimate missing links. Ecol Lett 11:533–546

    PubMed Central  PubMed  Google Scholar 

  • Lavikainen A, Haukisalmi V, Lehtinen MJ, Laaksonen Henttonen H, Oksanen A, Meri S (2008) A phylogeny of members of the family Taeniidae based on mitochondrial cox1 and nad1 gene data. Parasitology 135:1457–1467

    CAS  PubMed  Google Scholar 

  • Lawton SP, Hirai H, Ironside JE, Johnston DA, Rollinson D (2011) Genomes and geography: genomic insights into the evolution and phylogeography of the genus Schistosoma. Parasit Vectors 4:131

    PubMed Central  PubMed  Google Scholar 

  • Lustigman S, Geldhof P, Grant WN, Osei-Atweneboana MY, Sripa B, Basanez MG (2012) A research agenda for helminth diseases of humans: basic research and enabling technologies to support control and elimination of helminthiases. PLoS Negl Trop Dis 6:e1582

    PubMed Central  PubMed  Google Scholar 

  • Marty AM, Andersen EM (2000) Fasciolopsiasis and other intestinal trematodiases. In: Meyers WM, Neafie RC, Marty AM, Wear DJ (eds) Pathology of infectious diseases. Vol 1: Helminthiases. Armed Forces Institute of Pathology, Washington, DC, pp 93–105

    Google Scholar 

  • Mattiucci S, Nascetti G (2008) Advances and trends in the molecular systematics of anisakid nematodes, with implications for their evolutionary ecology and host-parasite co-evolutionary processes. Adv Parasitol 66:47–148

    PubMed  Google Scholar 

  • McManus DP (2006) Molecular discrimination of taeniid cestodes. Parasitol Int 55:S31–S37

    CAS  PubMed  Google Scholar 

  • McNulty SN, Weil GJ, Heinz M, Crosby SD, Fischer PU (2008) Brugia malayi: whole genome amplification for genomic characterization of filarial parasites. Exp Parasitol 119:256–263

    CAS  PubMed  Google Scholar 

  • McNulty SN, Mitreva M, Weil GJ, Fischer PU (2013) Inter and intra-specific diversity of parasites that cause lymphatic filariasis. Infect Genet Evol 14:137–146

    PubMed Central  PubMed  Google Scholar 

  • Meldal BH, Debenham NJ, De Ley P, De Ley IT, Vanfleteren JR, Vierstraete AR, Bert W, Borgonie G, Moens T, Tyler PA, Austen MC, Blaxter ML, Rogers AD, Lambshead PJ (2007) An improved molecular phylogeny of the Nematoda with special emphasis on marine taxa. Mol Phylogenet Evol 42:622–636

    CAS  PubMed  Google Scholar 

  • Mitreva M, Jasmer DP, Zarlenga DS et al (2011) The draft genome of the parasitic nematode Trichinella spiralis. Nat Genet 43:228–235

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murray CJ, Lopez AD (1996) The global burden of disease. A comprehensive assessment of mortality and disability from diseases, injuries, and risk factors in 1990 and projected to 2020. Harvard School of Public Health, World Bank, World Health Organization, Geneva

    Google Scholar 

  • Nadler SA (2002) Species delimitation and nematode biodiversity: phylogenies rule. Nematology 4:615–625

    Google Scholar 

  • Nadler SA, Hudspeth DSS (2000) Phylogeny of the ascaridoidea (Nematoda: Ascaridida) based on three genes and morphology: hypotheses of structural and sequence evolution. J Parasitol 86:380–393

    CAS  PubMed  Google Scholar 

  • Nadler SA, Pérez-Ponce de León P (2011) Integrating molecular and morphological approaches for characterizing parasite cryptic species: implications for parasitology. Parasitology 138:1688–1709

    CAS  PubMed  Google Scholar 

  • Nakao M, McManus P, Schantz PM, Craig PS, Ito A (2007) A molecular phylogeny of the genus Echinococcus inferred from complete mitochondrial genomes. Parasitology 134:713–722

    CAS  PubMed  Google Scholar 

  • Nakao M, Xiao N, Okomoto M, Yanagida T, Sako Y, Ito A (2009) Geographic pattern of genetic variation in the fox tapeworm Echinococcus multilocularis. Parasitol Int 58:384–389

    CAS  PubMed  Google Scholar 

  • Nakao M, Lavikainen A, Iwaki T, Haukisalmi V, Konyaev S, Oku Y, Okamoto M, Ito A (2013a) Molecular phylogeny of the genus Taenia (Cestoda: Taeniidae): proposals for the resurrection of Hydatigera Lamarck, 1816 and the creation of a new genus Versteria. Int J Parasitol 43:427–437

    CAS  PubMed  Google Scholar 

  • Nakao M, Lavikainen A, Yanagida T, Ito A (2013b) Phylogenetic systematics of the genus Echinococcus. Int J Parasitol 43(12–13):1017–1029. doi:10.1016/j.ijpara.2013.06.002

    CAS  PubMed  Google Scholar 

  • Nguyen TGT, De NV, Vercruysse J, Dorny P, Le TH (2009) Genotypic characterization and species identification of Fasciola spp. with implications regarding the isolates infecting goats in Vietnam. Exp Parasitol 123:354–361

    CAS  PubMed  Google Scholar 

  • Nieberding CM, Durette-Desset M-C, Vanderpooten A et al (2008) Geography and host biogeography matter in understanding phylogeography of a parasite. Mol Phylogenet Evol 47:538–554

    CAS  PubMed  Google Scholar 

  • Norton AJ, Gower CM, Lamberton PHL, Webster BL, Lwambo NJS, Blair L, Fenwick A, Webster JP (2010) Genetic consequences of mass human chemotherapy for Schistosoma mansoni: population structure pre- and post-praziquantel treatment in tanzania. Am J Trop Med Hyg 83:951–957

    PubMed Central  PubMed  Google Scholar 

  • O’Brien SJ, Stanyon R (1999) Phylogenomics. Ancestral primate viewed. Nature 402:365–366

    PubMed  Google Scholar 

  • Olson PD, Cribb TH, Tkach VV, Bray RA, Littlewood DT (2003) Phylogeny and classification of the Digenea (Platyhelminthes: Trematoda). Int J Parasitol 33:733–755

    CAS  PubMed  Google Scholar 

  • Palumbi S (2001) Humans as the world’s greatest evolutionary force. Science 293:1786–1790

    CAS  PubMed  Google Scholar 

  • Pareek CS, Smoczynski R, Tretyn A (2011) Sequencing technologies and genome sequencing. J Appl Genet 52:413–435

    CAS  PubMed Central  PubMed  Google Scholar 

  • Patz JA, Graczyk T, Geller N, Vittor AY (2000) Effects of environmental change on emerging parasitic diseases. Int J Parasitol 30:1395–1405

    CAS  PubMed  Google Scholar 

  • Patz JA, Gibbs HK, Foley JA, Roger JA, Smith KR (2007) Climate change and global health: quantifying a growing ethical crisis. Ecohealth 4:397–405

    Google Scholar 

  • Patz JA, Olson SH, Uejio CK, Gibbs HK (2008) Disease emergence from global climate and land use change. Med Clin North Am 92:1473–1491

    PubMed  Google Scholar 

  • Peng W, Criscione CD (2012) Ascariasis in people and pigs: new inferences from DNA analysis of worm populations. Infect Genet Evol 12:227–235

    PubMed  Google Scholar 

  • Peng WD, Yuan K, Hu M, Zhou XM, Gasser RB (2005) Mutation scanning-coupled analysis of haplotypic variability in mitochondrial DNA regions reveals low gene flow between human and porcine Ascaris in endemic regions of China. Electrophoresis 26:4317–4326

    CAS  PubMed  Google Scholar 

  • Pérez-Ponce de Léon G, Nadler SA (2010) What we don’t recognize can hurt us: a plea for awareness about cryptic species. J Parasitol 96:453–464

    Google Scholar 

  • Peterson AT (2011) Ecological niche conservatism: a time-structured view of evidence. J Biogeogr 28:817–827

    Google Scholar 

  • Philippe H, Snell EA, Bapteste E, Lopez P, Holland PW, Casane D (2004) Phylogenomics of eukaryotes: impact of missing data on large alignments. Mol Biol Evol 21:1740–1752

    CAS  PubMed  Google Scholar 

  • Philippe H, Delsuc F, Brinkmann H, Lartillot N (2005a) Phylogenomics. Annu Rev Ecol Evol Syst 36:541–562

    Google Scholar 

  • Philippe H, Lartillot N, Brinkmann H (2005b) Multigene analyses of bilaterian animals corroborate the monophyly of Ecdysozoa, Lophotrochozoa, and Protostomia. Mol Biol Evol 22:1246–1253

    CAS  PubMed  Google Scholar 

  • Phillips MJ, Delsuc F, Penny D (2004) Genome-scale phylogeny and the detection of systematic biases. Mol Biol Evol 21:1455–1458

    CAS  PubMed  Google Scholar 

  • Pimentel D, Zuniga R, Morrison D (2005) Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol Econ 52:273–288

    Google Scholar 

  • Polley L (2005) Navigating parasite webs and parasite flow: emerging and re-emerging parasitic zoonoses of wildlife origin. Int J Parasitol 35:1279–1294

    PubMed  Google Scholar 

  • Polley L, Thompson RCA (2009) Parasite zoonoses and climate change: molecular tools for tracking shifting boundaries. Trends Parasitol 25:285–291

    CAS  PubMed  Google Scholar 

  • Pozio E, Hoberg EP, La Rosa G, Zarlenga DS (2009) Molecular taxonomy and phylogeny of nematodes of the genus Trichinella. Infect Genet Evol 9:606–616

    CAS  PubMed  Google Scholar 

  • Riccardi A (2007) Are modern biological invasions an unprecedented form of global change? Conserv Biol 21:239–336

    Google Scholar 

  • Rokas A, Williams BL, King N, Carroll SB (2003) Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425:798–804

    CAS  PubMed  Google Scholar 

  • Rollinson D, Kaukas A, Johnston DA, Simpson AJ, Tanaka M (1997) Some molecular insights into schistosome evolution. Int J Parasitol 27:11–28

    CAS  PubMed  Google Scholar 

  • Rosenthal B (2008) How has agriculture influenced the geography and genetics of animal parasites? Trends Parasitol 25:67–70

    PubMed  Google Scholar 

  • Rosenthal BM, La Rosa G, Zarlenga D, Dunams D, Chunyu Y, Mingyuan L, Pozio E (2008) Human dispersal of Trichinella spiralis in domesticated pigs. Infect Genet Evol 8:799–805

    CAS  PubMed  Google Scholar 

  • Roy SW, Gilbert W (2005) Resolution of a deep animal divergence by the pattern of intron conservation. Proc Natl Acad Sci USA 102:4403–4408

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rufener L, Keiser J, Kaminsky R, Mäser P, Nilsson D (2010) Phylogenomics of ligand-gated ion channels predicts monepantel effect. PLoS Pathol 6:e1001091

    Google Scholar 

  • Shinya R, Morisaka H, Kikuchi T, Takeuchi Y, Ueda M, Futai K (2013) Secretome analysis of the pine wood nematode Bursaphelenchus xylophilus reveals the tangled roots of parasitism and its potential for molecular mimicry. PLoS One 8:e67377

    CAS  PubMed Central  PubMed  Google Scholar 

  • Silva L, Liu S, Blanton RE (2006) Microsatellite analysis of pooled Schistosoma mansoni DNA: an approach for studies of parasite populations. Parasitology 132:331–338

    CAS  PubMed  Google Scholar 

  • Smart JJC (1959) Can biology be an exact science? Synthese 11:359–368

    Google Scholar 

  • Snyder SD, Loker ES (2000) Evolutionary relationships among the Schistosomatidae (Platyhelminthes:Digenea) and an Asian origin for Schistosoma. J Parasitol 86:283–288

    CAS  PubMed  Google Scholar 

  • Steinauer ML (2009) The sex lives of parasites: investigating the mating system and mechanisms of sexual selection of the human pathogen Schistosoma mansoni. Int J Parasitol 39:1157–1163

    PubMed Central  PubMed  Google Scholar 

  • Steinauer ML, Hanelt B, Mwangi IN, Maina GM, Agola LE, Kinuthia JM, Mutuku MW, Mungai BN, Wilson WD, Mkoji GM, Loker ES (2008) Introgressive hybridization of human and rodent schistosome parasites in western Kenya. Mol Ecol 17:5062–5074

    CAS  PubMed  Google Scholar 

  • Steinauer ML, Blouin MS, Criscione CD (2010) Applying evolutionary genetics to schistosome epidemiology. Infect Genet Evol 10:433–443

    CAS  PubMed Central  PubMed  Google Scholar 

  • Strube C, Buschbaum S, Schnieder T (2012) Genes of the bovine lungworm Dictyocaulus viviparus associated with transition from pasture to parasitism. Infect Genet Evol 12:1178–1188

    CAS  PubMed  Google Scholar 

  • Swain MT, Larkin DM, Caffrey CR, Davies SJ, Loukas A, Skelly PJ, Hoffmann KF (2011) Schistosoma comparative genomics: integrating genome structure, parasite biology and anthelmintic discovery. Trends Parasitol 27:555–564

    CAS  PubMed Central  PubMed  Google Scholar 

  • Taylor SH, Latham SM, Woolhouse MEJ (2001) Risk factors for human disease emergence. Philos Trans R Soc Lond B Biol Sci 356:983–989

    CAS  PubMed Central  PubMed  Google Scholar 

  • Taylor CM, Wang Q, Rosa BA, Huang SC, Powell K, Schedl T, Pearce EJ, Abubucker S, Mitreva M (2013) Discovery of anthelmintic drug targets and drugs using chokepoints in nematode metabolic pathways. PLoS Pathog 9:e1003505

    CAS  PubMed Central  PubMed  Google Scholar 

  • The Schistosoma japonicum Genome Sequencing and Functional Analysis Consortium (2009) The Schistosoma japonicum genome reveals features of host-parasite interplay. Nature 460:345–351

    Google Scholar 

  • Thompson JN (2005) The geographic mosaic of coevolution. University of Chicago Press, Chicago

    Google Scholar 

  • Tsai IJ, Zarowiecki M, Holroyd N et al (2013) The genomes of four tapeworm species reveal adaptations to parasitism. Nature 496:57–63

    CAS  PubMed Central  PubMed  Google Scholar 

  • Underwood AP, Supali T, Wu Y, Bianco AE (2000) Two microsatellite loci from Brugia malayi show polymorphisms among isolates from Indonesia and Malaysia. Mol Biochem Parasitol 106:299–302

    CAS  PubMed  Google Scholar 

  • Valentim CLL, LoVerde PT, Anderson TJC, Criscione CD (2009) Efficient genotyping of Schistosoma mansoni miracidia following whole genome amplification. Mol Biochem Parasitol 166:81–84

    CAS  PubMed Central  PubMed  Google Scholar 

  • Van Megen H, Van den Elsen S, Holterman M, Karssen G, Mooyman P, Bongers T, Holovachov O, Bakker J, Helder J (2009) A phylogenetic tree of nematodes based on about 1200 full-length small subunit ribosomal DNA sequences. Nematology 11:927–950

    Google Scholar 

  • Weaver HJ, Hawdon JM, Hoberg EP (2010) Soil-transmitted helminthiases: implications of climate change and human behavior. Trends Parasitol 26:574–581

    PubMed  Google Scholar 

  • Wiley EO, Lieberman BS (2011) Phylogenetics: the theory and practice of phylogenetic systematics, 2nd edn. Wiley-Blackwell, Hoboken

    Google Scholar 

  • Wolf YI, Rogozin IB, Koonin EV (2004) Coelomata and not Ecdysozoa: evidence from genome-wide phylogenetic analysis. Genome Res 14:29–36

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wolfe N, Panosian Dunavan C, Diamond J (2007) Origins of major human infectious diseases. Nature 447:279–283

    CAS  PubMed  Google Scholar 

  • Yamane K, Suzuki Y, Tachi E et al (2012) Recent hybridization between Taenia asiatica and Taenia saginata. Parasitol Int 61:351–355

    CAS  PubMed  Google Scholar 

  • Zarlenga DS, Rosenthal BM, La Rosa G, Pozio E, Hoberg EP (2006) Post Miocene expansion, colonization, and host switching drove speciation among extant nematodes of the archaic genus Trichinella. Proc Natl Acad Sci USA 103:7354–7359

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the efforts of Dr. Benjamin Rosenthal in critiquing this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dante S. Zarlenga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Zarlenga, D.S., Hoberg, E.P., Detwiler, J.T. (2014). Diversity and History as Drivers of Helminth Systematics and Biology. In: Bruschi, F. (eds) Helminth Infections and their Impact on Global Public Health. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1782-8_1

Download citation

Publish with us

Policies and ethics