Skip to main content

Recent Biosensors for Food Analysis in Brazil and Italy

  • Conference paper
  • First Online:
Food Quality, Safety and Technology

Abstract

The importance of safe and high-quality food products is doubtless and consumer demand for increased food quality and safety assurances moves down the chain with retailers and service providers asking suppliers and producers to provide verifiable proof that robust food quality and safety control systems have been effectively implemented. Food analysis needs rapid and reliable methods to ensure the quality of products and process control. Food quality control is essential both for consumer protection and also for food industry. Nowadays, the convergence of new technologies, including biotechnology, nanotechnology, and electronic technology, has opened new horizons in development of biosensors. These devices offer advantages as alternatives to conventional methods because they enable real-time detection, portability, and fast laboratory or in-field analysis. This contribution presents a review about the development and application of biosensor technology in foods, and future trends in Brazil and Italy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Amati L, Campanella L, Dragone R, Nuccilli A, Tomassetti M, Vecchio S (2008) New investigation of the isothermal oxidation of extra virgin olive oil: determination of free radicals, total polyphenols, total antioxidant capacity, and kinetic data. J Agric Food Chem 24:8287–8295

    Article  Google Scholar 

  • Arecchi A, Scampicchio M, Drusch S, Mannino S (2010) Nanofibrous membrane based tyrosinase-biosensor for the detection of phenolic compounds. Anal Chim Acta 659:133–136

    Article  CAS  Google Scholar 

  • Baratella D, Magro M, Sinigaglia G, Zboril R, Salviulo G, Vianello F (2013) A glucose biosensor based on surface active maghemite nanoparticles. Biosens Bioelectron 45:13–18

    Article  CAS  Google Scholar 

  • Caetano J, Machado SAS (2008) Determination of carbaryl in tomato “in natura” using an amperometric biosensor based on the inhibition of acetylcholinesterase activity. Sens Actuators B Chem 129:40–46

    Article  CAS  Google Scholar 

  • Campanella L, di Persio G, Pintore M, Tonnina D, Caretto N, Martini E, Lelo D (2009) Determination of nonsteroidal anti-inflammatory drugs (NSAIDs) in milk and fresh cheese based on the inhibition of cyclooxygenase. J Food Technol Biotechnol 47:172–177

    CAS  Google Scholar 

  • Castillo G, Lamberti I, Mosiello L, Hianik T (2012) Impedimetric DNA aptasensor for sensitive detection of ochratoxin a in food. Electroanalysis 24:512–520

    Article  CAS  Google Scholar 

  • Centi S, Stoica AI, Laschi S, Mascini M (2010) Development of an electrochemical immunoassay based on the use of an eight-electrodes screen-printed array coupled with magnetic beads for the detection of antimicrobial sulfonamides in honey. Electroanalysis 22:1881–1888

    Article  CAS  Google Scholar 

  • Cesarino I, Moraes FC, Lanza MRV, Machado SAS (2012) Electrochemical detection of carbamate pesticides in fruit and vegetables with a biosensor based on acetylcholinesterase immobilised on a composite of polyaniline–carbon nanotubes. Food Chem 135:873–879

    Article  CAS  Google Scholar 

  • Codex Alimentarius Commission (2009) Codex General Standard for contaminants and toxins in food and feed. Codex Stan 193-1995

    Google Scholar 

  • De Mattos IL, Areias MCD (2005) Automated determination of glucose in soluble coffee using Prussian blue-glucose oxidase-Nafion (R) modified electrode. Talanta 66:1281–1286

    Article  Google Scholar 

  • Ferreira LS, Trierweiler JO, De Souza Jr MB, Folly ROM (2004) A lactose fia-biosensor system for monitoring and process control. Braz J Chem Eng 21:307–315

    Article  Google Scholar 

  • Ferrini AM, Mannoni V, Carpico G, Pellegrini GE (2008) Detection and identification of beta-lactam residues in milk using a hybrid biosensor. J Agric Food Chem 13:784–788

    Article  Google Scholar 

  • Jackson LS (2009) Chemical food safety issues in the United States: past, present, and future. J Agric Food Chem 57:8161–8170

    Article  CAS  Google Scholar 

  • Kantiani L, Llorca M, Sanchís J, Farré M, Barceló D (2010) Emerging food contaminants: a review. Anal Bioanal Chem 398:2413–2427

    Article  CAS  Google Scholar 

  • Lavecchia T, Rea G, Antonacci A, Giardi MT (2013) Healthy and adverse effects of plant-derived functional metabolites: the need of revealing their content and bioactivity in a complex food matrix. Crit Rev Food Sci Nutr 53:198–213

    Article  CAS  Google Scholar 

  • Mazzei F, Botrè F, Favero G (2007) Peroxidase based biosensors for the selective determination of D, L-lactic acid and L-malic acid in wines. Microchem J 87:81–86

    Article  CAS  Google Scholar 

  • McGrath TF, Elliott CT, Fodey TL (2012) Biosensors for the analysis of microbiological and chemical contaminants in food. Anal Bioanal Chem 403:75–92

    Article  CAS  Google Scholar 

  • Mello LD, Sotomayor MDPT, Kubota LT (2003) HRP-based amperometric biosensor for the polyphenols determination in vegetables extract. Sens Actuators B 96:636–645

    Article  CAS  Google Scholar 

  • Mentana A, Palermo C, Nardiello D, Quinto M, Centonze D (2013) Simultaneous and accurate real-time monitoring of glucose and ethanol in alcoholic drinks, must, and biomass by a dual-amperometric biosensor. J Agric Food Chem 61(1):61–68

    Article  CAS  Google Scholar 

  • Mozaz SR, Marco MP, Lopez de Alda MJ, Barceló D (2004) Biosensors for environmental applications: future development trends. Pure Appl Chem 2004(76):723–752

    Article  Google Scholar 

  • Palchetti I, Mascini M (2012) Electrochemical nanomaterial-based nucleic acid aptasensors. Anal Bioanal Chem 402:3103–3114

    Article  CAS  Google Scholar 

  • Pascale M, Zezza F, Perrone G (2013) Surface plasmon resonance genosensor for the detection of Fusarium culmorum. Methods Mol Biol 968:155–165

    Article  CAS  Google Scholar 

  • Pedrosa VA, Caetano J, Machado SAS, Freire RS, Bertotti M (2007) Acetylcholinesterase immobilization on 3-mercaptopropionic acid self assembled monolayer for determination of pesticides. Electroanalysis 19:1415–1420

    Article  CAS  Google Scholar 

  • Pimenta-Martins MGR, Furtado RF, Heneine LGD, Dias RS, Borges MF, Alves CR (2012) Development of an amperometric immunosensor for detection of staphylococcal enterotoxin type A in cheese. J Microbiol Methods 91:138–143

    Article  CAS  Google Scholar 

  • Pires ACD, Soares NDF, da Silva LHM, da Silva MDH, De Almeida MV, Le Hyaric M, de Andrade NJ, Soares RF, Mageste AB, Reis SG (2011) A colorimetric biosensor for the detection of foodborne bactéria. Sens Actuators B 153:17–23

    Article  CAS  Google Scholar 

  • Rejeb IB, Arduini F, Arvinte A, Amine A, Gargouri M, Micheli L, Bala C, Moscone D, Palleschi G (2009) Development of a bio-electrochemical assay for AFB(1) detection in olive oil. Biosens Bioelectron 24:1962–1968

    Article  Google Scholar 

  • Ricciardi C, Castagna R, Ferrante I, Frascella F, Marasso SL, Ricci A, Canavese G, Lorè A, Prelle A, Gullino ML, Spadaro D (2013a) Development of a microcantilever-based immunosensing method for mycotoxin detection. Biosens Bioelectron 40:233–239

    Article  CAS  Google Scholar 

  • Ricciardi C, Ferrante I, Castagna R, Frascella F, Marasso SL, Santoro K, Gili M, Pitardi D, Pezzolato M, Bozzetta E (2013b) Immunodetection of 17b-estradiol in serum at ppt level by microcantilever resonators. Biosens Bioelectron 40:407–411

    Article  CAS  Google Scholar 

  • Silva GJL, Andrade CAS, Oliveira IS, de Melo CP, Oliveira MDL (2012) Impedimetric sensor for toxigenic Penicilliumsclerotigenum detection in yam based on magnetite-poly(allylamine hydrochloride) composite. J Colloid Interface Sci 396:258–263

    Article  Google Scholar 

  • Thevenot DR, Tóth K, Durst RA, Wilson GS (1999) Electrochemical biosensors: recommended definitions and classification. Pure Appl Chem 71:2333–2348

    Article  CAS  Google Scholar 

  • Tombelli S, Mascini M (2009) Aptamers as molecular tools for bioanalytical methods. Curr Opin Mol Ther 11:179–188

    CAS  Google Scholar 

  • Virolainen N, Guglielmetti S, Arioli S, Karp M (2012) Bioluminescence-based identification of nisin producers – a rapid and simple screening method for nisinogenic bacteria in food samples. Int J Food Microbiol 158:126–132

    Article  CAS  Google Scholar 

  • Zamolo VA, Valenti G, Venturelli E, Chaloin O, Marcaccio M, Boscolo S, Castagnola V, Sosa S, Berti F, Fontanive G, Poli M, Tubaro A, Bianco A, Paolucci F, Prato M (2012) Highly sensitive electrochemiluminescent nanobiosensor for the detection of palytoxin. ACS Nano 6:7989–7997

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valber A. Pedrosa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this paper

Cite this paper

Pedrosa, V.A., Fleuri, L.F., Lima, G.P.P., Magro, M., Vianello, F. (2013). Recent Biosensors for Food Analysis in Brazil and Italy. In: Lima, G., Vianello, F. (eds) Food Quality, Safety and Technology. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1640-1_11

Download citation

Publish with us

Policies and ethics