Skip to main content

Sphingolipids and Response to Chemotherapy

  • Chapter
  • First Online:
Sphingolipids in Disease

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 216))

Abstract

Chemotherapy is frequently used to treat primary or metastatic cancers, but intrinsic or acquired drug resistance limits its efficiency. Sphingolipids are important regulators of various cellular processes including proliferation, apoptosis, differentiation, angiogenesis, stress, and inflammatory responses which are linked to various aspects of cancer, like tumor growth, neoangiogenesis, and response to chemotherapy. Ceramide, the central molecule of sphingolipid metabolism, generally mediates antiproliferative and proapoptotic functions, whereas sphingosine-1-phosphate and other derivatives have opposing effects. Among the variety of enzymes that control ceramide generation, acid or neutral sphingomyelinases and ceramide synthases are important targets to allow killing of cancer cells by chemotherapeutic drugs. On the contrary, glucosylceramide synthase, ceramidase, and sphingosine kinase are other targets driving cancer cell resistance to chemotherapy. This chapter focuses on ceramide-based mechanisms leading to cancer therapy sensitization or resistance which could have some impacts on the development of novel cancer therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe A, Radin NS, Shayman JA, Wotring LL, Zipkin RE, Sivakumar R, Ruggieri JM, Carson KG, Ganem B (1995) Structural and stereochemical studies of potent inhibitors of glucosylceramide synthase and tumor cell growth. J Lipid Res 36:611–621

    PubMed  CAS  Google Scholar 

  • Akao Y, Banno Y, Nakagawa Y, Hasegawa N, Kim TJ, Murate T, Igarashi Y, Nozawa Y (2006) High expression of sphingosine kinase 1 and S1P receptors in chemotherapy-resistant prostate cancer PC-3 cells and their camptothecin-induced up-regulation. Biochem Biophys Res Commun 342:1284–1290

    PubMed  CAS  Google Scholar 

  • Baran Y, Salas A, Senkal CE, Gunduz U, Bielawski J, Obeid LM, Ogretmen B (2007) Alterations of ceramide/sphingosine 1-phosphate rheostat involved in the regulation of resistance to imatinib-induced apoptosis in K562 human chronic myeloid leukemia cells. J Biol Chem 282:10922–10934

    PubMed  CAS  Google Scholar 

  • Bedia C, Casas J, Andrieu-Abadie N, Fabriàs G, Levade T (2011) Acid ceramidase expression modulates the sensitivity of A375 melanoma cells to dacarbazine. J Biol Chem 286:28200–28209

    PubMed  CAS  Google Scholar 

  • Bektas M, Jolly PS, Muller C, Eberle J, Spiegel S, Geilen CC (2005) Sphingosine kinase activity counteracts ceramide-mediated cell death in human melanoma cells: role of Bcl-2 expression. Oncogene 24:178–187

    PubMed  CAS  Google Scholar 

  • Bektas M, Spiegel S (2004) Glycosphingolipids and cell death. Glycoconj J 20:39–47

    PubMed  CAS  Google Scholar 

  • Bettaieb A, Plo I, Mansat V, Quillet-Mary A, Levade T, Laurent G, Jaffrézou JP (1999) Daunorubicin and mitoxantrone-triggered phosphatidylcholine hydrolysis: implication in drug-induced ceramide generation and apoptosis. Mol Pharmacol 55:118–125

    PubMed  CAS  Google Scholar 

  • Bezombes C, Grazide S, Garret C, Fabre C, Quillet-Mary A, Müller S, Jaffrézou JP, Laurent G (2004) Rituximab antiproliferative effect in B-lymphoma cells is associated with acid-sphingomyelinase activation in raft microdomains. Blood 104:1166–1173

    PubMed  CAS  Google Scholar 

  • Bezombes C, Laurent G, Jaffrézou JP (2003) Implication of raft microdomains in drug induced apoptosis. Curr Med Chem Anticancer Agents 3:263–270

    PubMed  CAS  Google Scholar 

  • Bezombes C, Plo I, Mansat-De Mas V, Quillet-Mary A, Nègre-Salvayre A, Laurent G, Jaffrézou JP (2001) Oxidative stress-induced activation of Lyn recruits sphingomyelinase and is requisite for its stimulation by Ara-C. FASEB J 15:1583–1585

    PubMed  CAS  Google Scholar 

  • Bielawska A, Greenberg MS, Perry D, Jayadev S, Shayman JA, McKay C, Hannun YA (1996) (1S,2R)-D-erythro-2-(N-myristoylamino)-1-phenyl-1-propanol as an inhibitor of ceramidase. J Biol Chem 271:12646–12654

    PubMed  CAS  Google Scholar 

  • Birbes H, Bawab SE, Obeid LM, Hannun YA (2002) Mitochondria and ceramide: intertwined roles in regulation of apoptosis. Adv Enzyme Regul 42:113–129

    PubMed  CAS  Google Scholar 

  • Bornancin F (2011) Ceramide kinase: the first decade. Cell Signal 23:999–1008

    PubMed  CAS  Google Scholar 

  • Bose R, Verheij M, Haimovitz-Friedman A, Scotto K, Fuks Z, Kolesnick R (1995) Ceramide synthase mediates daunorubicin-induced apoptosis: an alternative mechanism for generating death signals. Cell 82:405–414

    PubMed  CAS  Google Scholar 

  • Brown DA, London E (2000) Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J Biol Chem 275:17221–17224

    PubMed  CAS  Google Scholar 

  • Cabot MC, Giuliano AE, Han TY, Liu YY (1999) SDZ PSC 833, the cyclosporine A analogue and multidrug resistance modulator, activates ceramide synthesis and increases vinblastine sensitivity in drug-sensitive and drug-resistant cancer cells. Cancer Res 59:880–885

    PubMed  CAS  Google Scholar 

  • Canals D, Perry DM, Jenkins RW, Hannun YA (2011) Drug targeting of sphingolipid metabolism: sphingomyelinases and ceramidases. Br J Pharmacol 163:694–712

    PubMed  CAS  Google Scholar 

  • Carpinteiro A, Dumitru C, Schenck M, Gulbins E (2008) Ceramide-induced cell death in malignant cells. Cancer Lett 264:1–10

    PubMed  CAS  Google Scholar 

  • Cavallini L, Venerando R, Miotto G, Alexandre A (1999) Ganglioside GM1 protection from apoptosis of rat heart fibroblasts. Arch Biochem Biophys 370:156–162

    PubMed  CAS  Google Scholar 

  • Charles AG, Han TY, Liu YY, Hansen N, Giuliano AE, Cabot MC (2001) Taxol-induced ceramide generation and apoptosis in human breast cancer cells. Cancer Chemother Pharmacol 47:444–450

    PubMed  CAS  Google Scholar 

  • Chmura SJ, Nodzenski E, Beckett MA, Kufe DW, Quintans J, Weichselbaum RR (1997) Loss of ceramide production confers resistance to radiation-induced apoptosis. Cancer Res 57:1270–1275

    PubMed  CAS  Google Scholar 

  • Corcoran CA, He Q, Ponnusamy S, Ogretmen B, Huang Y, Sheikh MS (2008) Neutral sphingomyelinase-3 is a DNA damage and nongenotoxic stress-regulated gene that is deregulated in human malignancies. Mol Cancer Res 6:795–807

    PubMed  CAS  Google Scholar 

  • Cremesti AE, Goni FM, Kolesnick R (2002) Role of sphingomyelinase and ceramide in modulating rafts: do biophysical properties determine biologic outcome? FEBS Lett 531:47–53

    PubMed  CAS  Google Scholar 

  • Cuvillier O, Pirianov G, Kleuser B, Vanek PG, Coso OA, Gutkind S, Spiegel S (1996) Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature 381:800–803

    PubMed  CAS  Google Scholar 

  • Dbaibo GS, Kfoury Y, Darwiche N, Panjarian S, Kozhaya L, Nasr R, Abdallah M, Hermine O, El-Sabban M, de Thé H, Bazarbachi A (2007) Arsenic trioxide induces accumulation of cytotoxic levels of ceramide in acute promyelocytic leukemia and adult T-cell leukemia/lymphoma cells through de novo ceramide synthesis and inhibition of glucosylceramide synthase activity. Haematologica 92:753–762

    PubMed  CAS  Google Scholar 

  • De Rosa MF, Sillence D, Ackerley C, Lingwood C (2004) Role of multiple drug resistance protein 1 in neutral but not acidic glycosphingolipid biosynthesis. J Biol Chem 279:7867–7876

    PubMed  Google Scholar 

  • Dimanche-Boitrel MT, Meurette O, Rebillard A, Lacour S (2005) Role of early plasma membrane events in chemotherapy-induced cell death. Drug Resist Updat 8:5–14

    PubMed  CAS  Google Scholar 

  • Dimanche-Boitrel MT, Rebillard A, Gulbins E (2011) Ceramide in chemotherapy of tumors. Recent Pat Anticancer Drug Discov 6:284–293

    PubMed  CAS  Google Scholar 

  • Dumitru CA, Carpinteiro A, Trarbach T, Hengge UR, Gulbins E (2007) Doxorubicin enhances TRAIL-induced cell death via ceramide-enriched membrane platforms. Apoptosis 12:1533–1541

    PubMed  CAS  Google Scholar 

  • Dumitru CA, Gulbins E (2006) TRAIL activates acid sphingomyelinase via a redox mechanism and releases ceramide to trigger apoptosis. Oncogene 25:5612–5625

    PubMed  CAS  Google Scholar 

  • Eto M, Bennouna J, Hunter OC, Hershberger PA, Kanto T, Johnson CS, Lotze MT, Amoscato AA (2003) C16 ceramide accumulates following androgen ablation in LNCaP prostate cancer cells. Prostate 57:66–79

    PubMed  CAS  Google Scholar 

  • Ferrari G, Anderson BL, Stephens RM, Kaplan DR, Greene LA (1995) Prevention of apoptotic neuronal death by GM1 ganglioside. Involvement of Trk neurotrophin receptors. J Biol Chem 270:3074–3080

    PubMed  CAS  Google Scholar 

  • Futerman AH, Hannun YA (2004) The complex life of simple sphingolipids. EMBO Rep 5:777–782

    PubMed  CAS  Google Scholar 

  • Gómez-Muñoz A, Kong JY, Salh B, Steinbrecher UP (2004) Ceramide-1-phosphate blocks apoptosis through inhibition of acid sphingomyelinase in macrophages. J Lipid Res 45:99–105

    PubMed  Google Scholar 

  • Goni FM, Alonso A (2002) Sphingomyelinases: enzymology and membrane activity. FEBS Lett 531:38–46

    PubMed  CAS  Google Scholar 

  • Gouazé V, Liu YY, Prickett CS, Yu JY, Giuliano AE, Cabot MC (2005) Glucosylceramide synthase blockade down-regulates P-glycoprotein and resensitizes multidrug-resistant breast cancer cells to anticancer drugs. Cancer Res 65:3861–3867

    PubMed  Google Scholar 

  • Gouazé V, Yu JY, Bleicher RJ, Han TY, Liu YY, Wang H, Gottesman MM, Bitterman A, Giuliano AE, Cabot MC (2004) Overexpression of glucosylceramide synthase and P-glycoprotein in cancer cells selected for resistance to natural product chemotherapy. Mol Cancer Ther 3:633–639

    PubMed  Google Scholar 

  • Gouazé-Andersson V, Yu JY, Kreitenberg AJ, Bielawska A, Giuliano AE, Cabot MC (2007) Ceramide and glucosylceramide upregulate expression of the multidrug resistance gene MDR1 in cancer cells. Biochim Biophys Acta 1771:1407–1417

    PubMed  Google Scholar 

  • Gouazé-Andersson V, Cabot MC (2006) Glycosphingolipids and drug resistance. Biochim Biophys Acta 1758:2096–2103

    PubMed  Google Scholar 

  • Goulding CW, Giuliano AE, Cabot MC (2000) SDZ PSC 833 the drug resistance modulator activates cellular ceramide formation by a pathway independent of P-glycoprotein. Cancer Lett 149:143–151

    PubMed  CAS  Google Scholar 

  • Graf C, Klumpp M, Habig M, Rovina P, Billich A, Baumruker T, Oberhauser B, Bornancin F (2008) Targeting ceramide metabolism with a potent and specific ceramide kinase inhibitor. Mol Pharmacol 74:925–932

    PubMed  CAS  Google Scholar 

  • Grammatikos G, Teichgräber V, Carpinteiro A, Trarbach T, Weller M, Hengge UR, Gulbins E (2007) Overexpression of acid sphingomyelinase sensitizes glioma cells to chemotherapy. Antioxid Redox Signal 9:1449–1456

    PubMed  CAS  Google Scholar 

  • Grassmé H, Jekle A, Riehle A, Schwarz H, Berger J, Sandhoff K, Kolesnick R, Gulbins E (2001) CD95 signaling via ceramide-rich membrane rafts. J Biol Chem 276:20589–20596

    PubMed  Google Scholar 

  • Grassmé H, Jendrossek V, Bock J, Riehle A, Gulbins E (2002) Ceramide-rich membrane rafts mediate CD40 clustering. J Immunol 168:298–307

    PubMed  Google Scholar 

  • Grazide S, Maestre N, Veldman RJ, Bezombes C, Maddens S, Levade T, Laurent G, Jaffrézou JP (2002) Ara-C- and daunorubicin-induced recruitment of Lyn in sphingomyelinase-enriched membrane rafts. FASEB J 16:1685–1687

    PubMed  CAS  Google Scholar 

  • Green DR (2000) Apoptotic pathways: paper wraps stone blunts scissors. Cell 102:1–4

    PubMed  CAS  Google Scholar 

  • Guillermet-Guibert J, Davenne L, Pchejetski D, Saint-Laurent N, Brizuela L, Guilbeau-Frugier C, Delisle MB, Cuvillier O, Susini C, Bousquet C (2009) Targeting the sphingolipid metabolism to defeat pancreatic cancer resistance to the chemotherapeutic gemcitabine drug. Mol Cancer Res 8:809–820

    CAS  Google Scholar 

  • Gulbins E, Grassmé H (2002) Ceramide and cell death receptor clustering. Biochim Biophys Acta 1585:139–145

    PubMed  CAS  Google Scholar 

  • Gulbins E, Kolesnick R (2003) Raft ceramide in molecular medicine. Oncogene 22:7070–7077

    PubMed  CAS  Google Scholar 

  • Gulbins E, Li PL (2006) Physiological and pathophysiological aspects of ceramide. Am J Physiol Regul Integr Comp Physiol 290:R11–26

    PubMed  CAS  Google Scholar 

  • Gustafsson K, Sander B, Bielawski J, Hannun YA, Flygare J (2009) Potentiation of cannabinoid-induced cytotoxicity in mantle cell lymphoma through modulation of ceramide metabolism. Mol Cancer Res 7:1086–1098

    PubMed  CAS  Google Scholar 

  • Hait NC, Allegood J, Maceyka M, Strub GM, Harikumar KB, Singh SK, Luo C, Marmorstein R, Kordula T, Milstien S, Spiegel S (2009) Regulation of histone acetylation in the nucleus by sphingosine-1-phosphate. Science 325:1254–1257

    PubMed  CAS  Google Scholar 

  • Hannun YA (1994) The sphingomyelin cycle and the second messenger function of ceramide. J Biol Chem 269:3125–3128

    PubMed  CAS  Google Scholar 

  • Holman DH, Turner LS, El-Zawahry A, Elojeimy S, Liu X, Bielawski J, Szulc ZM, Norris K, Zeidan YH, Hannun YA, Bielawska A, Norris JS (2008) Lysosomotropic acid ceramidase inhibitor induces apoptosis in prostate cancer cells. Cancer Chemother Pharmacol 61:231–242

    PubMed  CAS  Google Scholar 

  • Hsieh SY, Hsu CY, He JR, Liu CL, Lo SJ, Chen YC, Huang HY (2009) Identifying apoptosis-evasion proteins/pathways in human hepatoma cells via induction of cellular hormesis by UV irradiation. J Proteome Res 8:3977–3986

    PubMed  CAS  Google Scholar 

  • Hueber AO, Bernard AM, Herincs Z, Couzinet A, He HT (2002) An essential role for membrane rafts in the initiation of Fas/CD95-triggered cell death in mouse thymocytes. EMBO Rep 3:190–196

    PubMed  CAS  Google Scholar 

  • Ito H, Murakami M, Furuhata A, Gao S, Yoshida K, Sobue S, Hagiwara K, Takagi A, Kojima T, Suzuki M, Banno Y, Tanaka K, Tamiya-Koizumi K, Kyogashima M, Nozawa Y, Murate T (2009) Transcriptional regulation of neutral sphingomyelinase 2 gene expression of a human breast cancer cell line, MCF-7, induced by the anti-cancer drug, daunorubicin. Biochim Biophys Acta 1789:681–690

    PubMed  CAS  Google Scholar 

  • Jaffrézou JP, Levade T, Bettaïeb A, Andrieu N, Bezombes C, Maestre N, Vermeersch S, Rousse A, Laurent G (1996) Daunorubicin-induced apoptosis: triggering of ceramide generation through sphingomyelin hydrolysis. EMBO J 15:2417–2424

    PubMed  Google Scholar 

  • Kang MS, Ahn KH, Kim SK, Jeon HJ, Ji JE, Choi JM, Jung KM, Jung SY, Kim DK (2010) Hypoxia-induced neuronal apoptosis is mediated by de novo synthesis of ceramide through activation of serine palmitoyltransferase. Cell Signal 22:610–618

    PubMed  CAS  Google Scholar 

  • Kapitonov D, Allegood JC, Mitchell C, Hait NC, Almenara JA, Adams JK, Zipkin RE, Dent P, Kordula T, Milstien S, Spiegel S (2009) Targeting sphingosine kinase 1 inhibits Akt signaling, induces apoptosis, and suppresses growth of human glioblastoma cells and xenografts. Cancer Res 69:6915–6923

    PubMed  CAS  Google Scholar 

  • Karahatay S, Thomas K, Koybasi S, Senkal CE, Elojeimy S, Liu X, Bielawski J, Day TA, Gillespie MB, Sinha D, Norris JS, Hannun YA, Ogretmen B (2007) Clinical relevance of ceramide metabolism in the pathogenesis of human head and neck squamous cell carcinoma (HNSCC): attenuation of C(18)-ceramide in HNSCC tumors correlates with lymphovascular invasion and nodal metastasis. Cancer Lett 256:101–111

    PubMed  CAS  Google Scholar 

  • Kawamori T, Kaneshiro T, Okumura M, Maalouf S, Uflacker A, Bielawski J, Hannun YA, Obeid LM (2009) Role for sphingosine kinase 1 in colon carcinogenesis. FASEB J 23:405–414

    PubMed  CAS  Google Scholar 

  • Koybasi S, Senkal CE, Sundararaj K, Spassieva S, Bielawski J, Osta W, Day TA, Jiang JC, Jazwinski SM, Hannun YA, Obeid LM, Ogretmen B (2004) Defects in cell growth regulation by C18:0-ceramide and longevity assurance gene 1 in human head and neck squamous cell carcinomas. J Biol Chem 279:44311–44319

    PubMed  CAS  Google Scholar 

  • Lacour S, Hammann A, Grazide S, Lagadic-Gossmann D, Athias A, Sergent O, Laurent G, Gambert P, Solary E, Dimanche-Boitrel MT (2004) Cisplatin-induced CD95 redistribution into membrane lipid rafts of HT29 human colon cancer cells. Cancer Res 64:3593–3598

    PubMed  CAS  Google Scholar 

  • Laviad EL, Albee L, Pankova-Kholmyansky I, Epstein S, Park H, Merrill AH Jr, Futerman AH (2008) Characterization of ceramide synthase 2: tissue distribution, substrate specificity and inhibition by sphingosine 1-phosphate. J Biol Chem 283:5677–5684

    PubMed  CAS  Google Scholar 

  • Lavie Y, Cao H, Bursten SL, Giuliano AE, Cabot MC (1996) Accumulation of glucosylceramides in multidrug-resistant cancer cells. J Biol Chem 271:19530–19536

    PubMed  CAS  Google Scholar 

  • Levade T, Jaffrézou JP (1999) Signaling sphingomyelinases: which, where, how and why? Biochim Biophys Acta 1438:1–17

    PubMed  CAS  Google Scholar 

  • Li H, Zhu H, Xu CJ, Yuan J (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491–501

    PubMed  CAS  Google Scholar 

  • Lin CF, Chen CL, Lin YS (2006) Ceramide in apoptotic signaling and anticancer therapy. Curr Med Chem 13:1609–1616

    PubMed  CAS  Google Scholar 

  • Liu P, Anderson R (1995) Compartmentalized production of ceramide at the cell surface. J Biol Chem 270:27179–27185

    PubMed  CAS  Google Scholar 

  • Liu YY, Han TY, Giuliano AE, Cabot MC (1999a) Expression of glucosylceramide synthase, converting ceramide to glucosylceramide, confers adriamycin resistance in human breast cancer cells. J Biol Chem 274:1140–1146

    PubMed  CAS  Google Scholar 

  • Liu YY, Han TY, Giuliano AE, Ichikawa S, Hirabayashi Y, Cabot MC (1999b) Glycosylation of ceramide potentiates cellular resistance to tumor necrosis factor-alpha-induced apoptosis. Exp Cell Res 252:464–470

    PubMed  CAS  Google Scholar 

  • Liu H, Toman RE, Goparaju SK, Maceyka M, Nava VE, Sankala H, Payne SG, Bektas M, Ishii I, Chun J, Milstien S, Spiegel S (2003) Sphingosine kinase type 2 is a putative BH3-only protein that induces apoptosis. J Biol Chem 278:40330–40336

    PubMed  CAS  Google Scholar 

  • Liu YY, Gupta V, Patwardhan GA, Bhinge K, Zhao Y, Bao J, Mehendale H, Cabot MC, Li YT, Jazwinski SM (2010) Glucosylceramide synthase upregulates MDR1 expression in the regulation of cancer drug resistance through cSrc and beta-catenin signaling. Mol Cancer 9:145

    PubMed  Google Scholar 

  • Lovat PE, Di Sano F, Corazzari M, Fazi B, Donnorso RP, Pearson AD, Hall AG, Redfern CP, Piacentini M (2004) Gangliosides link the acidic sphingomyelinase-mediated induction of ceramide to 12-lipoxygenase-dependent apoptosis of neuroblastoma in response to fenretinide. J Natl Cancer Inst 96:1288–1299

    PubMed  CAS  Google Scholar 

  • Lucci A, Cho WI, Han TY, Giuliano AE, Morton DL, Cabot MC (1998) Glucosylceramide: a marker for multiple-drug resistant cancers. Anticancer Res 18:475–480

    PubMed  CAS  Google Scholar 

  • Luo X, Budihardjo I, Zou H, Slaughter C, Wang X (1998) Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94:481–490

    PubMed  CAS  Google Scholar 

  • Mao C, Obeid LM (2008) Ceramidases: regulators of cellular responses mediated by ceramide, sphingosine, and sphingosine-1-phosphate. Biochim Biophys Acta 1781:424–434

    PubMed  CAS  Google Scholar 

  • Maceyka M, Sankala H, Hait NC, Le Stunff H, Liu H, Toman R, Collier C, Zhang M, Satin LS, Merrill AH Jr, Milstien S, Spiegel S (2005) SphK1 and SphK2, sphingosine kinase isoenzymes with opposing functions in sphingolipid metabolism. J Biol Chem 280:37118–37129

    PubMed  CAS  Google Scholar 

  • Mansat V, Laurent G, Levade T, Bettaïeb A, Jaffrézou JP (1997) The protein kinase C activators phorbol esters and phosphatidylserine inhibit neutral sphingomyelinase activation, ceramide generation, and apoptosis triggered by daunorubicin. Cancer Res 57:5300–5304

    PubMed  CAS  Google Scholar 

  • Mansat-de Mas V, Bezombes C, Quillet-Mary A, Bettaïeb A, D’orgeix AD, Laurent G, Jaffrézou JP (1999) Implication of radical oxygen species in ceramide generation, c-Jun N-terminal kinase activation and apoptosis induced by daunorubicin. Mol Pharmacol 56:867–874

    PubMed  CAS  Google Scholar 

  • Micheau O, Solary E, Hammann A, Dimanche-Boitrel MT (1999) Fas ligand-independent, FADD-mediated activation of the Fas death pathway by anticancer drugs. J Biol Chem 274:7987–7992

    PubMed  CAS  Google Scholar 

  • Mimeault M (2002) New advances on structural and biological functions of ceramide in apoptotic/necrotic cell death and cancer. FEBS Lett 530:9–16

    PubMed  CAS  Google Scholar 

  • Min J, Mesika A, Sivaguru M, Van Veldhoven PP, Alexander H, Futerman AH, Alexander S (2007) (Dihydro)ceramide synthase 1 regulated sensitivity to cisplatin is associated with the activation of p38 mitogen-activated protein kinase and is abrogated by sphingosine kinase 1. Mol Cancer Res 5:801–812

    PubMed  CAS  Google Scholar 

  • Mizutani Y, Kihara A, Igarashi Y (2005) Mammalian Lass6 and its related family members regulate synthesis of specific ceramides. Biochem J 390:263–271

    PubMed  CAS  Google Scholar 

  • Modrak DE, Cardillo TM, Newsome GA, Goldenberg DM, Gold DV (2004) Synergistic interaction between sphingomyelin and gemcitabine potentiates ceramide-mediated apoptosis in pancreatic cancer. Cancer Res 64:8405–8410

    PubMed  CAS  Google Scholar 

  • Morita Y, Perez GI, Paris F, Miranda SR, Ehleiter D, Haimovitz-Friedman A, Fuks Z, Xie Z, Reed JC, Schuchman EH, Kolesnick RN, Tilly JL (2000) Oocyte apoptosis is suppressed by disruption of the acid sphingomyelinase gene or by sphingosine-1-phosphate therapy. Nat Med 6:1109–1114

    PubMed  CAS  Google Scholar 

  • Morjani H, Aouali N, Belhoussine R, Veldman RJ, Levade T, Manfait M (2001) Elevation of glucosylceramide in multidrug-resistant cancer cells and accumulation in cytoplasmic droplets. Int J Cancer 94:157–165

    PubMed  CAS  Google Scholar 

  • Muzio M, Chinnaiyan AM, Kischkel FC, O’Rourke K, Shevchenko A, Ni J, Scaffidi C, Bretz JD, Zhang M, Gentz R, Mann M, Krammer PH, Peter ME, Dixit VM (1996) FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell 85:817–827

    PubMed  CAS  Google Scholar 

  • Nemoto S, Nakamura M, Osawa Y, Kono S, Itoh Y, Okano Y, Murate T, Hara A, Ueda H, Nozawa Y, Banno Y (2009) Sphingosine kinase isoforms regulate oxaliplatin sensitivity of human colon cancer cells through ceramide accumulation and Akt activation. J Biol Chem 284:10422–10432

    PubMed  CAS  Google Scholar 

  • Obeid LM, Linardic CM, Karolak LA, Hannun YA (1993) Programmed cell death induced by ceramide. Science 259:1769–1771

    PubMed  CAS  Google Scholar 

  • Ogretmen B, Hannun YA (2004) Biologically active sphingolipids in cancer pathogenesis and treatment. Nat Rev Cancer 4:604–616

    PubMed  CAS  Google Scholar 

  • Olivera A, Spiegel S (1993) Sphingosine-1-phosphate as second messenger in cell proliferation induced by PDGF and FCS mitogens. Nature 365:557–560

    PubMed  CAS  Google Scholar 

  • Osawa Y, Uchinami H, Bielawski J, Schwabe RF, Hannun YA, Brenner DA (2005) Roles for C16-ceramide and sphingosine 1-phosphate in regulating hepatocyte apoptosis in response to tumor necrosis factor-alpha. J Biol Chem 280:27879–27887

    PubMed  CAS  Google Scholar 

  • Paris F, Fuks Z, Kang A, Capodieci P, Juan G, Ehleiter D, Haimovitz-Friedman A, Cordon-Cardo C, Kolesnick R (2001) Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science 293:293–297

    PubMed  CAS  Google Scholar 

  • Park MA, Mitchell C, Zhang G, Yacoub A, Allegood J, Häussinger D, Reinehr R, Larner A, Spiegel S, Fisher PB, Voelkel-Johnson C, Ogretmen B, Grant S, Dent P (2010) Vorinostat and sorafenib increase CD95 activation in gastrointestinal tumor cells through a Ca(2+)-de novo ceramide-PP2A-reactive oxygen species-dependent signaling pathway. Cancer Res 70:6313–6324

    PubMed  CAS  Google Scholar 

  • Pchejetski D, Golzio M, Bonhoure E, Calvet C, Doumerc N, Garcia V, Mazerolles C, Rischmann P, Teissié J, Malavaud B, Cuvillier O (2005) Sphingosine kinase-1 as a chemotherapy sensor in prostate adenocarcinoma cell and mouse models. Cancer Res 65:11667–11675

    PubMed  CAS  Google Scholar 

  • Perrotta C, Bizzozero L, Falcone S, Rovere-Querini P, Prinetti A, Schuchman EH, Sonnino S, Manfredi AA, Clementi E (2007) Nitric oxide boosts chemoimmunotherapy via inhibition of acid sphingomyelinase in a mouse model of melanoma. Cancer Res 67:7559–7564

    PubMed  CAS  Google Scholar 

  • Pettus BJ, Chalfant CE, Hannun YA (2002) Ceramide in apoptosis: an overview and current perspectives. Biochim Biophys Acta 1585:114–125

    PubMed  CAS  Google Scholar 

  • Pewzner-Jung Y, Ben-Dor S, Futerman AH (2006) When do Lasses (longevity assurance genes) become CerS (ceramide synthases)? Insights into the regulation of ceramide synthesis. J Biol Chem 281:25001–25005

    PubMed  CAS  Google Scholar 

  • Plo I, Ghandour S, Feutz AC, Clanet M, Laurent G, Bettaieb A (1999) Involvement of de novo ceramide biosynthesis in lymphotoxin-induced oligodendrocyte death. Neuroreport 10:2373–2376

    PubMed  CAS  Google Scholar 

  • Qiu H, Edmunds T, Baker-Malcolm J, Karey KP, Estes S, Schwarz C, Hughes H, Van Patten SM (2003) Activation of human acid sphingomyelinase through modification or deletion of C-terminal cysteine. J Biol Chem 278:32744–32752

    PubMed  CAS  Google Scholar 

  • Rath G, Schneider C, Langlois B, Sartelet H, Morjani H, Btaouri HE, Dedieu S, Martiny L (2009) De novo ceramide synthesis is responsible for the anti-tumor properties of camptothecin and doxorubicin in follicular thyroid carcinoma. Int J Biochem Cell Biol 41:1165–1172

    PubMed  CAS  Google Scholar 

  • Ravagnan L, Roumier T, Kroemer G (2002) Mitochondria, the killer organelles and their weapons. J Cell Physiol 2:131–137

    Google Scholar 

  • Rebillard A, Tekpli X, Meurette O, Sergent O, Le Moigne-Muller G, Vernhet L, Gorria M, Chevanne M, Christmann M, Kaina B, Counillon L, Gulbins E, Lagadic-Gossmann D, Dimanche-Boitrel MT (2007) Cisplatin-induced apoptosis involved membrane fluidification via inhibition of NHE1 in human colon cancer cells. Cancer Res 67:7865–7874

    PubMed  CAS  Google Scholar 

  • Rebillard A, Lagadic-Gossmann D, Dimanche-Boitrel MT (2008a) Cisplatin cytotoxicity: DNA and plasma membrane targets. Curr Med Chem 15:2656–2663

    PubMed  CAS  Google Scholar 

  • Rebillard A, Rioux-Leclercq N, Muller C, Bellaud P, Jouan F, Meurette O, Jouan E, Vernhet L, Le Quément C, Carpinteiro A, Schenck M, Lagadic-Gossmann D, Gulbins E, Dimanche-Boitrel MT (2008b) Acid sphingomyelinase deficiency protects from cisplatin-induced gastrointestinal damage. Oncogene 27:6590–6595

    PubMed  CAS  Google Scholar 

  • Riboni L, Campanella R, Bassi R, Villani R, Gaini SM, Martinelli-Boneschi F, Viani P, Tettamanti G (2002) Ceramide levels are inversely associated with malignant progression of human glial cells. Glia 39:105–113

    PubMed  Google Scholar 

  • Riebeling C, Allegood JC, Wang E, Merill AH Jr, Futerman AH (2003) Two mammalian longevity assurance gene (LAG1) family members, trh1 and trh4, regulate dihydroceramide synthesis using different fatty acyl-CoA donors. J Biol Chem 278:43452–43459

    PubMed  CAS  Google Scholar 

  • Rizzieri KE, Hannun YA (1998) Sphingolipid metabolism, apoptosis and resistance to cytotoxic agents: can we interfere? Drug Resist Updat 1:359–376

    PubMed  CAS  Google Scholar 

  • Ruckhäberle E, Karn T, Rody A, Hanker L, Gätje R, Metzler D, Holtrich U, Kaufmann M (2009) Gene expression of ceramide kinase, galactosyl ceramide synthase and ganglioside GD3 synthase is associated with prognosis in breast cancer. J Cancer Res Clin Oncol 135:1005–1013

    PubMed  Google Scholar 

  • Ruckhäberle E, Rody A, Engels K, Gaetje R, von Minckwitz G, Schiffmann S, Grösch S, Geisslinger G, Holtrich U, Karn T, Kaufmann M (2008) Microarray analysis of altered sphingolipid metabolism reveals prognostic significance of sphingosine kinase 1 in breast cancer. Breast Cancer Res Treat 112:41–52

    PubMed  Google Scholar 

  • Rylova SN, Somova OG, Dyatlovitskaya EV (1998) Comparative investigation of sphingoid bases and fatty acids in ceramides and sphingomyelins from human ovarian malignant tumors and normal ovary. Biochemistry 63:1057–1060

    PubMed  CAS  Google Scholar 

  • Saad AF, Meacham WD, Bai A, Anelli V, Elojeimy S, Mahdy AE, Turner LS, Cheng J, Bielawska A, Bielawski J, Keane TE, Obeid LM, Hannun YA, Norris JS, Liu X (2007) The functional effects of acid ceramidase overexpression in prostate cancer progression and resistance to chemotherapy. Cancer Biol Ther 6:1455–1460

    PubMed  CAS  Google Scholar 

  • Sabourdy F, Selves J, Astudillo L, Laurent C, Brousset P, Delisle MB, Therville N, Andrieu-Abadie N, Ségui B, Recher C, Levade T (2011) Is active acid sphingomyelinase required for the antiproliferative response to rituximab? Blood 117:3695–3696

    PubMed  CAS  Google Scholar 

  • Samsel L, Zaidel G, Drumgoole HM, Jelovac D, Drachenberg C, Rhee JG, Brodie AM, Bielawska A, Smyth MJ (2004) The ceramide analog, B13, induces apoptosis in prostate cancer cell lines and inhibits tumor growth in prostate cancer xenografts. Prostate 58:382–393

    PubMed  CAS  Google Scholar 

  • Sankala HM, Hait NC, Paugh SW, Shida D, Lépine S, Elmore LW, Dent P, Milstien S, Spiegel S (2007) Involvement of sphingosine kinase 2 in p53-independent induction of p21 by the chemotherapeutic drug doxorubicin. Cancer Res 67:10466–10474

    PubMed  CAS  Google Scholar 

  • Schiffmann S, Sandner J, Birod K, Wobst I, Angioni C, Ruckhäberle E, Kaufmann M, Ackermann H, Lötsch J, Schmidt H, Geisslinger G, Grösch S (2009) Ceramide synthases and ceramide levels are increased in breast cancer tissue. Carcinogenesis 30:745–752

    PubMed  CAS  Google Scholar 

  • Schissel S, Keesler G, Schuchman E, Williams K, Tabas I (1998) The cellular trafficking and zinc dependence of secretory and lysosomal sphingomyelinase, two products of the acid sphingomyelinase gene. J Biol Chem 273:18250–18259

    PubMed  CAS  Google Scholar 

  • Schissel S, Schuchman E, Williams K, Tabas I (1996) Zn2+-stimulated sphingomyelinase is secreted by many cell types and is a product of the acid sphingomyelinase gene. J Biol Chem 271:18431–18436

    PubMed  CAS  Google Scholar 

  • Seelan RS, Qian C, Yokomizo A, Bostwick DG, Smith DI, Liu W (2000) Human acid ceramidase is overexpressed but not mutated in prostate cancer. Genes Chromosomes Cancer 29:137–146

    PubMed  CAS  Google Scholar 

  • Selzner M, Bielawska A, Morse MA, Rüdiger HA, Sindram D, Hannun YA, Clavien PA (2001) Induction of apoptotic cell death and prevention of tumor growth by ceramide analogues in metastatic human colon cancer. Cancer Res 61:1233–1240

    PubMed  CAS  Google Scholar 

  • Senkal CE, Ponnusamy S, Rossi MJ, Bialewski J, Sinha D, Jiang JC, Jazwinski SM, Hannun YA, Ogretmen B (2007) Role of human longevity assurance gene 1 and C18-ceramide in chemotherapy-induced cell death in human head and neck squamous cell carcinomas. Mol Cancer Ther 6:712–722

    PubMed  CAS  Google Scholar 

  • Shao RG, Cao X, Nieves-Neira W, Dimanche-Boitrel MT, Solary E, Pommier Y (2001) Activation of the Fas pathway independently of Fas ligand during apoptosis induced by camptothecin in p53 mutant human colon carcinoma cells. Oncogene 20:1852–1859

    PubMed  CAS  Google Scholar 

  • Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    PubMed  CAS  Google Scholar 

  • Simons K, Van Meer G (1988) Lipid sorting in epithelial cells. Biochemistry 27:6197–6202

    PubMed  CAS  Google Scholar 

  • Sobue S, Nemoto S, Murakami M, Ito H, Kimura A, Gao S, Furuhata A, Takagi A, Kojima T, Nakamura M, Ito Y, Suzuki M, Banno Y, Nozawa Y, Murate T (2008) Implications of sphingosine kinase 1 expression level for the cellular sphingolipid rheostat: relevance as a marker for daunorubicin sensitivity of leukaemia cells. Int J Haematol 87:266–275

    CAS  Google Scholar 

  • Spassieva S, Seo JG, Jiang JC, Bielawski J, Alvarez-Vasquez F, Jazwinski SM, Hannun YA, Obeid LM (2006) Necessary role for the Lag1p motif in (dihydro)ceramide synthase activity. J Biol Chem 281:33931–33938

    PubMed  CAS  Google Scholar 

  • Spence MW, Byers DM, Palmer FBSC, Cook HW (1989) A new Zn2+-stimulated sphingomyelinase in fetal bovine serum. J Biol Chem 264:5358–53563

    PubMed  CAS  Google Scholar 

  • Strelow A, Bernardo K, Adam-Klages S, Linke T, Sandhoff K, Krönke M, Adam D (2000) Overexpression of acid ceramidase protects from tumor necrosis factor-induced cell death. J Exp Med 192:601–612

    PubMed  CAS  Google Scholar 

  • Strum JC, Small GW, Pauig SB, Daniel LW (1994) 1-beta-D-Arabinofuranosylcytosine stimulates ceramide and diglyceride formation in HL-60 cells. J Biol Chem 269:15493–15497

    PubMed  CAS  Google Scholar 

  • Suda T, Takahashi T, Golstein P, Nagata S (1993) Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell 75:1169–1178

    PubMed  CAS  Google Scholar 

  • Sukocheva O, Wang L, Verrier E, Vadas MA, Xia P (2009) Restoring endocrine response in breast cancer cells by inhibition of the sphingosine kinase-1 signaling pathway. Endocrinology 150:4484–4492

    PubMed  CAS  Google Scholar 

  • Suzuki A, Iwasaki M, Kato M, Wagai N (1997) Sequential operation of ceramide synthesis and ICE cascade in CPT-11-initiated apoptotic death signaling. Exp Cell Res 233:41–47

    PubMed  CAS  Google Scholar 

  • Taha TA, Kitatani K, El-Alwani M, Bielawski J, Hannun YA, Obeid LM (2006) Loss of sphingosine kinase-1 activates the intrinsic pathway of programmed cell death: modulation of sphingolipid levels and the induction of apoptosis. FASEB J 20:482–484

    PubMed  CAS  Google Scholar 

  • Tepper AD, de Vries E, van Blitterswijk WJ, Borst J (1999) Ordering of ceramide formation, caspase activation, and mitochondrial changes during CD95- and DNA damage-induced apoptosis. J Clin Invest 103:971–978

    PubMed  CAS  Google Scholar 

  • Tomiuk S, Zumbansen M, Stoffel W (2000) Characterization and subcellular localization of murine and human magnesium-dependent neutral sphingomyelinase. J Biol Chem 275:5710–5717

    PubMed  CAS  Google Scholar 

  • Ueda N, Camargo SM, Hong X, Basnakian AG, Walker PD, Shah SV (2001) Role of ceramide synthase in oxidant injury to renal tubular epithelial cells. J Am Soc Nephrol 12:2384–2391

    PubMed  CAS  Google Scholar 

  • Van Meer G, Hoetzl S (2010) Sphingolipid topology and the dynamic organization and function of membrane proteins. FEBS Lett 584:1800–1805

    PubMed  Google Scholar 

  • Venkataraman K, Riebeling C, Bodennec J, Riezman H, Allegood JC, Sullards MC, Merrill AH Jr, Futerman AH (2002) Upstream of growth and differentiation factor 1 (uog1), a mammalian homolog of the yeast longevity assurance gene 1 (LAG1), regulates N-stearoyl-sphinganine (C18-(dihydro)ceramide) synthesis in a fumonisin B1-independent manner in mammalian cells. J Biol Chem 277:35642–35649

    PubMed  CAS  Google Scholar 

  • Verkleij AJ, Post JA (2000) Membrane phospholipid asymmetry and signal transduction. J Membr Biol 178:1–10

    PubMed  CAS  Google Scholar 

  • Visentin B, Vekich JA, Sibbald BJ, Cavalli AL, Moreno KM, Matteo RG, Garland WA, Lu Y, Yu S, Hall HS, Kundra V, Mills GB, Sabbadini RA (2006) Validation of an anti-sphingosine-1-phosphate antibody as a potential therapeutic in reducing growth, invasion, and angiogenesis in multiple tumor lineages. Cancer Cell 9:225–238

    PubMed  CAS  Google Scholar 

  • Wang H, Charles AG, Frankel AJ, Cabot MC (2003) Increasing intracellular ceramide: an approach that enhances the cytotoxic response in prostate cancer cells. Urology 61:1047–1052

    PubMed  Google Scholar 

  • Wang XZ, Beebe JR, Pwiti L, Bielawska A, Smyth MJ (1999) Aberrant sphingolipid signaling is involved in the resistance of prostate cancer cell lines to chemotherapy. Cancer Res 59:5842–5848

    PubMed  CAS  Google Scholar 

  • White-Gilbertson S, Mullen T, Senkal C, Lu P, Ogretmen B, Obeid L, Voelkel-Johnson C (2009) Ceramide synthase 6 modulates TRAIL sensitivity and nuclear translocation of active caspase-3 in colon cancer cells. Oncogene 28:1132–1141

    PubMed  CAS  Google Scholar 

  • Whitman SP, Civoli F, Daniel LW (1997) Protein kinase CbetaII activation by 1-beta-D-arabinofuranosylcytosine is antagonistic to stimulation of apoptosis and Bcl-2alpha down-regulation. J Biol Chem 272:23481–23484

    PubMed  CAS  Google Scholar 

  • Wu BX, Clarke CJ, Hannun YA (2010) Mammalian neutral sphingomyelinases: regulation and roles in cell signaling responses. Neuromolecular Med 12:320–330

    PubMed  Google Scholar 

  • Xia P, Gamble JR, Wang L, Pitson SM, Moretti PA, Wattenberg BW, D’Andrea RJ, Vadas MA (2000) An oncogenic role of sphingosine kinase. Curr Biol 10:1527–1530

    PubMed  CAS  Google Scholar 

  • Xu J, Yeh CH, Chen S, He L, Sensi SL, Canzoniero LM, Choi DW, Hsu CY (1998) Involvement of de novo ceramide biosynthesis in tumor necrosis factor-cycloheximide-induced cerebral endothelial cell death. J Biol Chem 273:16521–16526

    PubMed  CAS  Google Scholar 

  • Zeidan YH, Jenkins RW, Hannun YA (2008) Remodeling of cellular cytoskeleton by the acid sphingomyelinase/ceramide pathway. J Cell Biol 181:335–350

    PubMed  CAS  Google Scholar 

  • Zhang J, Alter N, Reed JC, Borner C, Obeid LM, Hannun YA (1996) Bcl-2 interrupts the ceramide-mediated pathway of cell death. Proc Natl Acad Sci USA 93:5325–538

    PubMed  CAS  Google Scholar 

  • Zheng W, Kollmeyer J, Symolon H, Momin A, Munter E, Wang E, Kelly S, Allegood JC, Liu Y, Peng Q, Ramaraju H, Sullards MC, Cabot M, Merrill AH Jr (2006) Ceramides and other bioactive sphingolipid backbones in health and disease: lipidomic analysis, metabolism and roles in membrane structure, dynamics, signaling and autophagy. Biochim Biophys Acta 1758:1864–1884

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Research in the IRSET INSERM U1085 group was supported by grants from the Ligue Nationale Contre le Cancer (the Côte d’Armor, Ille et Vilaine, Morbihan, Vendée, and Sarthe Comittees), INSERM, University of Rennes 1, and the Region Bretagne.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Thérèse Dimanche-Boitrel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Dimanche-Boitrel, MT., Rebillard, A. (2013). Sphingolipids and Response to Chemotherapy. In: Gulbins, E., Petrache, I. (eds) Sphingolipids in Disease. Handbook of Experimental Pharmacology, vol 216. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1511-4_4

Download citation

Publish with us

Policies and ethics