Skip to main content

Bacterial Infections and Ceramide

  • Chapter
  • First Online:
Sphingolipids in Disease

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 216))

Abstract

Ceramide is released from sphingomyelin primarily by the activity of acid, neutral, or alkaline sphingomyelinases or is synthesized de novo. Several bacteria, viruses, and even parasites infect mammalian cells by exploiting the acid sphingomyelinase or the neutral sphingomyelinase-ceramide system, or both. Sphingomyelinases and ceramide have been shown to be crucially involved in the internalization of pathogens, the induction of apoptosis in infected cells, the intracellular activation of signaling pathways, and the release of cytokines. The diverse functions of ceramide in infections suggest that the sphingomyelinase-ceramide system is a key player in the host response to many pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anes E, Kühnel MP, Bos E, Moniz-Pereira J, Habermann A, Griffith G (2003) Selected lipids activate phagosome actin assembly and maturation resulting in killing of pathogenic mycobacteria. Nat Cell Biol 5:793–802

    Article  PubMed  CAS  Google Scholar 

  • Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR (2001) Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med 29:1303–1310

    Article  PubMed  CAS  Google Scholar 

  • Apicella MA, Ketterer M, Lee FK, Zhou D, Rice PA, Blake MS (1996) The pathogenesis of gonococcal urethritis in men; confocal and immunoelectron microscopic analysis of urethral exudates from men infected with Neisseria gonorrhoeae. J Infect Dis 173:636–646

    Article  PubMed  CAS  Google Scholar 

  • Barber SA, Detore G, McNally R, Vogel SN (1996) Stimulation of the ceramide pathway partially mimics lipopolysaccharide-induced responses in murine peritoneal macrophages. Infect Immun 64:3397–3400

    PubMed  CAS  Google Scholar 

  • Basu S, Kolesnick RN (1998) Stress signals for apoptosis: ceramide and c-Jun kinase. Oncogene 17:3277–3285

    Article  PubMed  Google Scholar 

  • Bayles KW, Wesson CA, Liou LE, Fox LK, Bohach GA, Trumble WR (1998) Intracellular Staphylococcus aureus escapes the endosome and induces apoptosis in epithelial cells. Infect Immun 66:336–342

    PubMed  CAS  Google Scholar 

  • Bone RC (1991) Sepsis, the sepsis syndrome, multi-organ failure: a plea for comparable definitions. Ann Intern Med 114:332–333

    PubMed  CAS  Google Scholar 

  • CF Patient Registry (2010) CF foundation, patient registry annual report. Bethesda, MD, USA. http://www.cff.org/livingwithcf/carecenternetwork/patientregistry/

  • Chakravortty D, Hansen-Wester I, Hensel M (2002) Salmonella pathogenicity island 2 mediates protection of intracellular Salmonella from reactive nitrogen intermediates. J Exp Med 195:1155–1166

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee SB, Pandey A (2008) The Yin and Yang of lactosylceramide metabolism: implications in cell function. Biochem Biophys Acta 1780:370–382

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee SB, Dey S, Shi WY, Thomas K, Hutchins GM (1997) Accumulation of glycosphingolipids in human atherosclerotic plaque and unaffected aorta tissues. Glycobiology 7:57–65

    Article  PubMed  CAS  Google Scholar 

  • Chen T, Belland RJ, Wilson J, Swanson J (1995) Adherence of pilus- Opa+ gonococci to epithelial cells in vitro involves heparin sulfate. J Exp Med 182:511–517

    Article  PubMed  CAS  Google Scholar 

  • Chesney PJ (1989) Clinical aspects and spectrum of illness of toxic shock syndrome: overview. Rev Infect Dis 11:1–7

    Article  Google Scholar 

  • Cossart P, Vicente MF, Mengaud J, Baquero F, Perez-Diaz JC, Berche P (1989) Listeriolysin O is essential for virulence of Listeria monocytogenes: direct evidence obtained by gene complementation. Infect Immun 57:3629–3636

    PubMed  CAS  Google Scholar 

  • Crane JK, Majumdar S, Pickhardt DF 3rd (1999) Host cell death due to enteropathogenic Escherichia coli has features of apoptosis. Infect Immun 67:2575–2584

    PubMed  CAS  Google Scholar 

  • Crouch Brewer S, Wunderink RG, Jones CB, Leeper KV Jr (1996) Ventilator-associated pneumonia due to Pseudomonas aeruginosa. Chest 109:1019–1029

    Article  PubMed  CAS  Google Scholar 

  • Cuschieri J, Bulger E, Billgrin J, Garcia I, Maier RV (2007) Acid sphingomyelinase is required for lipid raft TLR4 complex formation. Surg Infect (Larchmt) 8:91–106

    Article  Google Scholar 

  • Dannenberg AM Jr (1994) Roles of cytotoxic delayed-type hypersensitivity and macrophage-activating cell-mediated immunity in the pathogenesis of tuberculosis. Immunobiology 191:461–473

    Article  PubMed  Google Scholar 

  • Dannenberg AM Jr, Sugimoto M (1976) Liquefaction of caseous foci in tuberculosis. Am Rev Respir Dis 113:257–259

    PubMed  Google Scholar 

  • Dye C, Bassili A, Bierenbach AL, Broekmans JF, Chada VK, Glaziou P, Gopi PG, Hosseini M, Kim SJ, Manissero D, Onozaki I, Rieder HL, Scheele S, van Leth F, van der Werf M, Wiliams BG (2008) Measuring tuberculosis burden, trends, and the impact of control programmes. Lancet Infect Dis 8:233–243

    Article  PubMed  CAS  Google Scholar 

  • Esen M, Schreiner B, Jendrossek V, Lang F, Fassbender K, Grassmé H, Gulbins E (2001) Mechanism of Staphylococcus aureus induced apoptosis of human endothelial cells. Apoptosis 6:431–439

    Article  PubMed  CAS  Google Scholar 

  • Falcone S, Perrotta C, De Palma C, Pisconti A, Sciorati C, Capobianco A, Rovere-Querini P, Manfredi AA, Clementi E (2004) Activation of acid sphingomyelinase and its inhibition by the nitric oxide/cyclic guanosine 3′,5′-monophosphate pathway: key events in Escherichia coli-elicited apoptosis of dendritic cells. J Immunol 173:4452–4463

    PubMed  CAS  Google Scholar 

  • Ferlinz K, Hurwitz R, Vielhaber G, Suzuki K, Sandhoff K (1994) Occurrence of two molecular forms of human acid sphingomyelinase. Biochem J 301:855–862

    PubMed  CAS  Google Scholar 

  • Galán JE, Collmer A (1999) Type III secretion machines: bacterial devices for protein delivery into host cells. Science 284:1322–1328

    Article  PubMed  Google Scholar 

  • Garner B, Mellor HR, Butters TD, Dwek RA, Platt FM (2002) Modulation of THP-1 macrophage and cholesterol-loaded foam cell apolipoprotein E levels by glycosphingolipids. Biochem Biophys Res Commun 290:1361–1367

    Article  PubMed  CAS  Google Scholar 

  • Goldfine H, Wadsworth SJ (2002) Macrophage intracellular signaling induced by Listeria monocytogenes. Microbes Infect 4:1335–1343

    Article  PubMed  CAS  Google Scholar 

  • Grassmé HU, Ireland RM, van Putten JP (1996) Gonococcal opacity protein promotes bacterial entry-associated rearrangements of epithelial cell actin-cytoskeleton. Infect Immun 64:1621–1630

    PubMed  Google Scholar 

  • Grassmé H, Gulbins E, Brenner B, Ferlinz K, Sandhoff K, Harzer K, Lang F, Meyer TF (1997) Acidic sphingomyelinase mediates entry of N. gonorrhoeae into nonphagocytic cells. Cell 91:605–615

    Article  PubMed  Google Scholar 

  • Grassmé H, Kirschnek S, Riethmüller J, Riehle A, von Kürthy G, Lang F, Weller M, Gulbins E (2000) CD95/CD95 ligand interactions on epithelial cells in host defense to Pseudomonas aeruginosa. Science 290:527–530

    Article  PubMed  Google Scholar 

  • Grassmé H, Jekle A, Riehle A, Schwarz H, Berger J, Sandhoff K, Kolesnick R, Gulbins E (2001) CD95 Signaling via ceramide-rich membrane rafts. J Biol Chem 276:20589–20596

    Article  PubMed  Google Scholar 

  • Grassmé H, Jendrossek V, Riehle A, von Kürthy G, Berger J, Schwarz H, Weller M, Kolesnick R, Gulbins E (2003) Host defense against Pseudomonas aeruginosa requires ceramide-rich membrane rafts. Nat Med 9:322–330

    Article  PubMed  Google Scholar 

  • Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312

    Article  PubMed  CAS  Google Scholar 

  • Gulbins E, Bissonette R, Mahboubi A, Martin S, Nishioka W, Brunner T, Baier G, Baier-Bitterlich G, Byrd C, Lang F et al (1995) FAS-induced apoptosis is mediated via a ceramide-initiated RAS signaling pathway. Immunity 2:341–351

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez MG, Gonzales AP, Anes E, Griffith G (2009) Role of lipids in killing mycobacteria by macrophages: evidence for NF-κB-dependent and -independent killing induced by different lipids. Cell Microbiol 11:406–420

    Article  PubMed  CAS  Google Scholar 

  • Gyles CL (1992) Escherichia coli cytotoxins and enterotoxins. Can J Microbiol 38:734–746

    Article  PubMed  CAS  Google Scholar 

  • Haas A (2007) The phagosome: compartment with a license to kill. Traffic 8:311–330

    Article  PubMed  CAS  Google Scholar 

  • Haimowitz-Friedman A, Cordon-Cardo C, Bayoumy S, Garzotto M, McLoughlin M, Gallily R, Edwards CK 3rd, Schuchman EH, Fuks Z, Kolesnick R (1997) Lipopolysaccharide induces disseminated endothelial apoptosis requiring ceramide generation. J Exp Med 186:1831–1841

    Article  Google Scholar 

  • Hambleton J, Weinstein SL, Lem L, DeFranco AL (1996) Activation of c-Jun N-terminal kinase in bacterial lipopolysaccharide-stimulated macrophages. Proc Natl Acad Sci USA 93:2774–2778

    Article  PubMed  CAS  Google Scholar 

  • Hankins JL, Fox TE, Barth BM, Unrath KA, Kester M (2011) Exogenous ceramide-1-phosphate reduces lipopolysaccharide (LPS)-mediated cytokine expression. J Biol Chem 286:44357–44366

    Article  PubMed  CAS  Google Scholar 

  • Hauck CR, Grassmé H, Bock J, Jendrossek V, Ferlinz K, Meyer TF, Gulbins E (2000) Acid sphingomyelinase is involved in CEACAM receptor-mediated phagocytosis of Neisseria gonorrhoeae. FEBS Lett 478:260–266

    Article  PubMed  CAS  Google Scholar 

  • Hauser AR, Engel JN (1999) Pseudomonas aeruginosa induces type-III-secretion-mediated apoptosis of macrophages and epithelial cells. Infect Immun 67:5530–5537

    PubMed  CAS  Google Scholar 

  • Heinrich M, Wickel M, Schneider-Brachert W, Sandberg C, Gahr J, Schwander R, Weber T, Saftig P, Peters C, Brunner J, Krönke M, Schütze S (1999) Cathepsin D targeted by acid sphingomyelinase-derived ceramide. EMBO J 18:5252–5263

    Article  PubMed  CAS  Google Scholar 

  • Herrera-Velit P, Reiner NE (1996) Bacterial lipopolysaccharide induces the association and coordinate activation of p53/561yn and phosphatidylinositol 3-kinase in human monocytes. J Immunol 156:1157–1165

    PubMed  CAS  Google Scholar 

  • Hersh D, Monack DM, Smith MR, Ghori N, Falkow S, Zychlinsky A (1999) The Salmonella invasion SipB induces macrophage apoptosis by binding to caspase-1. Proc Natl Acad Sci USA 96:2396–2401

    Article  PubMed  CAS  Google Scholar 

  • Jendrossek V, Fillon S, Belka C, Müller I, Puttkammer B, Lang F (2003) Apoptotic response of Chang cells to infection with Pseudomonas aeruginosa strains PAK and PAO-I: molecular ordering of the apoptosis signaling cascade and role of type IV pili. Infect Immun 71:2665–2673

    Article  PubMed  CAS  Google Scholar 

  • Kanto T, Kalinski P, Hunter OC, Lotze MT, Amoscato AA (2001) Ceramide mediates tumor-induced dendritic cell apoptosis. J Immunol 167:3773–3784

    PubMed  CAS  Google Scholar 

  • Keen EF 3rd, Robinson BJ, Hospenthal DR, Aldous WK, Wolf SE, Chung KK, Murray CK (2010) Incidence and bacteriology of burn infections at a military burn center. Burns 36:461–468

    Article  PubMed  Google Scholar 

  • Kim MJ, Wainwright HC, Lochetz M, Bekker LG, Walther GB, Dittrich C, Visser A, Wang W, Hsu FF, Wiehart U, Tsenova L, Kaplan G, Russel DG (2010) Caseation of human tuberculosis granulomas correlates with elevated host lipid metabolism. EMBO Mol Med 2: 258–274

    Article  PubMed  CAS  Google Scholar 

  • Kolesnick R, Krönke M (1998) Regulation of ceramide production and apoptosis. Annu Rev Physiol 60:643–665

    Article  PubMed  CAS  Google Scholar 

  • Kolter T, Sandhoff K (2005) Principles of lysosomal membrane digestion: stimulation of sphingolipid degradation by sphingolipid activator proteins and anionic lysosomal lipids. Annu Rev Cell Dev Biol 21:81–103

    Article  PubMed  CAS  Google Scholar 

  • Kowalski MP, Pier GB (2004) Localization of cystic fibrosis transmembrane conductance regulator to lipid rafts of epithelial cells is required for Pseudomonas aeruginosa-induced cellular activation. J Immunol 172:418–425

    PubMed  CAS  Google Scholar 

  • Kroemer G, Dallaporta B, Resche-Rigon M (1998) The mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol 60:619–642

    Article  PubMed  CAS  Google Scholar 

  • Kuhle V, Hensel M (2002) SseF and SseG are translocated effectors of the type III secretion system of Salmonella pathogenicity island 2 that modulates aggregation of endosomal compartments. Cell Microbiol 4:813–824

    Article  PubMed  CAS  Google Scholar 

  • Lambden PR, Heckels JE, James LT, Watt PJ (1979) Variations in surface protein composition associated with virulence properties in opacity types of Neisseria gonorrhoeae. J Gen Microbiol 114:305–312

    PubMed  CAS  Google Scholar 

  • Levade T, Jaffrézou JP (1999) Signaling sphingomyelinases: which, where, how and why? Biochem Biophys Acta 1438:1–17

    Article  PubMed  CAS  Google Scholar 

  • Lowy FD (1998) Staphylococcus aureus infections. N Engl J Med 339:520–532

    Article  PubMed  CAS  Google Scholar 

  • MacKichan ML, DeFranco AL (1999) Role of ceramide in lipopolysaccharide (LPS)-induced signaling. LPS increases ceramide rather than acting as a structural homolog. J Biol Chem 274:1767–1775

    Article  PubMed  CAS  Google Scholar 

  • Makino S, van Putten JP, Meyer TF (1991) Phase variation of the opacity outer membrane protein controls invasion by Neisseria gonorrhoeae into human epithelial cells. EMBO J 10:1307–1315

    PubMed  CAS  Google Scholar 

  • Marathe S, Schissel SL, Yellin MJ, Beatini N, Mintzer R, Williams KJ, Tabas I (1998) Human vascular endothelial cells are a rich and regulatable source of secretory sphingomyelinase. Implications for early atherogenesis and ceramide-mediated cell signaling. J Biol Chem 273:4081–4088

    Article  PubMed  CAS  Google Scholar 

  • Martin MU, Wesche H (2002) Summary and comparison of the signaling mechanisms of the Toll/interleukin-1 receptor family. Biochim Biophys Acta 1592:265–280

    Article  PubMed  CAS  Google Scholar 

  • McCollister BD, Bouret TJ, Gill R, Jones-Carson J, Vázquez-Torres A (2005) Repression of SPI2 transcription by nitric oxide-producing, IFNgamma-activated macrophages promotes maturation of Salmonella phagosomes. J Exp Med 5:625–635

    Article  Google Scholar 

  • McCollister BD, Myers JT, Jones-Carson J, Voelker DR, Vázquez-Torres A (2007) Constitutive acid sphingomyelinase enhances early and late macrophage killing of Salmonella enterica serovar Typhimurium. Infect Immun 75:5346–5352

    Article  PubMed  CAS  Google Scholar 

  • McGee ZA, Stephens DS, Hoffman LH, Schlech WF 3rd, Horn RG (1983) Mechanisms of mucosal invasion by pathogenic Neisseria. Rev Infect Dis 5(suppl 4):S708–S714

    Article  PubMed  Google Scholar 

  • McManus AT, Mason AD Jr, McManus WF, Pruitt BA Jr (1985) Twenty-five year review of Pseudomonas aeruginosa bacteremia in a burn center. Eur J Clin Microbiol 4:219–223

    Article  PubMed  CAS  Google Scholar 

  • Menzies BE, Kourteva I (1998) Internalization of Staphylococcus aureus by endothelial cells induces apoptosis. Infect Immun 66:5994–5998

    PubMed  CAS  Google Scholar 

  • Miao EA, Miller SI (2000) A conserved amino acid sequence directing intracellular type III secretion by Salmonella typhimurium. Proc Natl Acad Sci USA 97:7539–7544

    Article  PubMed  CAS  Google Scholar 

  • Monack DM, Mecsas J, Ghori N, Falkow S (1997) Yersinia signals macrophages to undergo apoptosis and YopJ is necessary for this cell death. Proc Natl Acad Sci USA 94:10385–10390

    Article  PubMed  CAS  Google Scholar 

  • Morrison DC, Ryan JL (1987) Endotoxins and disease mechanisms. Annu Rev Med 38:417–432

    Article  PubMed  CAS  Google Scholar 

  • Narumi S, Tebo JM, Finke JH, Hamilton TA (1992) IFN-gamma and IL-2 cooperatively activate NF kappa B in murine peritoneal macrophages. J Immunol 149:529–534

    PubMed  CAS  Google Scholar 

  • Oh YK, Alpuche-Aranda C, Berthiaume E, Jinks T, Miller SI, Swanson JA (1996) Rapid and complete fusion of macrophage lysosomes with phagosomes containing Salmonella typhimurium. Infect Immun 64:3877–3883

    PubMed  CAS  Google Scholar 

  • Pettus BJ, Chalfant CE, Hannun YA (2002) Ceramide in apoptosis: an overview and current perspectives. Biochim Biophys Acta 1585:114–125

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer A, Böttcher A, Orsó E, Kapinsky M, Nagy P, Bodnár A, Spreizer I, Liebisch G, Drobnik W, Gempel K, Horn M, Holmer S, Hartung T, Multhoff G, Schütz G, Schindler H, Ulmer AJ, Heine H, Stelter F, Schütt C, Rothe G, Szöllôsi J, Damjanovich S, Schmitz G (2001) Lipopolysaccharide and ceramide docking to CD14 provokes ligand-specific receptor clustering in rafts. Eur J Immunol 31:3153–3164

    Article  PubMed  CAS  Google Scholar 

  • Portnoy DA, Jacks PS, Hinrichs DJ (1988) Role of hemolysin for the intracellular growth of Listeria monocytogenes. J Exp Med 167:1459–1471

    Article  PubMed  CAS  Google Scholar 

  • Ruckdeschel K, Roggenkamp A, Lafont V, Mangeat P, Heeseman J, Rouot B (1997) Interaction of Yersinia enterocolitica with macrophages leads to macrophage cell death through apoptosis. Infect Immun 65:4813–4821

    PubMed  CAS  Google Scholar 

  • Russel DG (2001) Mycobacterium tuberculosis: here today, and here tomorrow. Nat Rev Mol Cell Biol 2:569–577

    Article  Google Scholar 

  • Russel DG (2007) Who puts the tubercle in tuberculosis? Nat Rev Microbiol 5:39–47

    Article  Google Scholar 

  • Russel DG, Cardona PJ, Kim MJ, Allain S, Altare F (2009) Foamy macrophages and the progression of the human tuberculosis granuloma. Nat Immunol 10:943–948

    Article  Google Scholar 

  • Sadikot RT, Blackwell TS, Christman JW, Prince AS (2005) Pathogen-host interactions in Pseudomonas aeruginosa pneumonia. Am J Respir Crit Care Med 171:1209–1223

    Article  PubMed  Google Scholar 

  • Schissel SL, Schuchman EH, Williams KJ, Tabas I (1996) Zn2+-stimulated sphingomyelinase is secreted by many cell types and is a product of the acid sphingomyelinase gene. J Biol Chem 271:18431–18436

    Article  PubMed  CAS  Google Scholar 

  • Schnupf P, Portnoy DA (2007) Listeriolysin O: a phagosome-specific lysin. Microbes Infect 9:1176–1187

    Article  PubMed  CAS  Google Scholar 

  • Schramm M, Herz J, Haas A, Krönke M, Utermöhlen O (2008) Acid sphingomyelinase is required for efficient phago-lysosomal fusion. Cell Microbiol 10:1839–1853

    Article  PubMed  CAS  Google Scholar 

  • Shea JE, Hensel M, Gleeson C, Holden DW (1996) Identification of a virulence locus encoding a second type III secretion system in Salmonella typhimurium. Proc Natl Acad Sci USA 93:2593–2597

    Article  PubMed  CAS  Google Scholar 

  • Stern A, Brown M, Nickel P, Meyer TF (1986) Opacity genes in Neisseria gonorrhoeae: control of phase and antigenic variation. Cell 47:61–71

    Article  PubMed  CAS  Google Scholar 

  • Takahashi A (1999) Caspase: executioner and undertaker of apoptosis. Int J Hematol 70:226–232

    PubMed  CAS  Google Scholar 

  • Takeda K, Akira S (2004) Microbial recognition by Toll-like receptors. J Dermatol Sci 34:73–82

    Article  PubMed  CAS  Google Scholar 

  • Thompson CB (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267:1456–1462

    Article  PubMed  CAS  Google Scholar 

  • Uchiya K, Barbieri MA, Funato K, Shah AH, Stahl PD, Groisman EA (1999) A Salmonella virulence protein that inhibits cellular trafficking. EMBO J 18:3924–3933

    Article  PubMed  CAS  Google Scholar 

  • Utermöhlen O, Karow U, Löhler J, Krönke M (2003) Severe impairment in early host defense against Listeria monocytogenes in mice deficient in acid sphingomyelinase. J Immunol 170:2621–2628

    PubMed  Google Scholar 

  • Utermöhlen O, Herz J, Schramm M, Krönke M (2008) Fusogenicity of membranes: the impact of acidic sphingomyelinase on innate immune responses. Immunobiology 213:307–314

    Article  PubMed  Google Scholar 

  • van Putten JP, Paul SM (1995) Binding of syndecan-like cell surface proteoglycan receptors is required for Neisseria gonorrhoeae entry into human mucosal cells. EMBO J 14:2144–2154

    PubMed  Google Scholar 

  • Vázquez-Boland JA, Kuhn M, Berche P, Chakraborty T, Domínguez-Bernal B, Goebel W, González-Zorn B, Wehland J, Kreft J (2001) Listeria pathogenesis and molecular virulence determinants. Clin Microbiol Rev 14:584–640

    Article  PubMed  Google Scholar 

  • Vázquez-Torres A, Jones-Carson J, Mastroeni P, Ischiropoulos H, Fang FC (2000) Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. I. Effects on microbial killing by activated peritoneal macrophages in vitro. J Exp Med 192:227–236

    Article  PubMed  Google Scholar 

  • Vidal F, Mensa J, Almela M, Martínez JA, Marco F, Casals C, Gatell JM, Soriano E, Jimenez de Anta MT (1996) Epidemiology and outcome of Pseudomonas aeruginosa bacteremia, with special emphasis on the influence of antibiotic treatment. Analysis of 189 episodes. Arch Intern Med 156:2121–2126

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Li X, Carpinteiro A, Gulbins E (2008) Acid sphingomyelinase amplifies redox signaling in Pseudomonas aeruginosa-induced macrophage apoptosis. J Immunol 181:4247–4254

    PubMed  CAS  Google Scholar 

  • Zychlinsky A, Kenny B, Ménard R, Prévost MC, Holland IB, Sansonetti PJ (1994) IpaB mediates macrophage apoptosis induced by Shigella flexneri. Mol Microbiol 11:619–627

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heike Grassmé .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Grassmé, H., Becker, K.A. (2013). Bacterial Infections and Ceramide. In: Gulbins, E., Petrache, I. (eds) Sphingolipids in Disease. Handbook of Experimental Pharmacology, vol 216. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1511-4_15

Download citation

Publish with us

Policies and ethics