Skip to main content

Pharmacological Potential of Natural Compounds in the Control of Selected Protozoan Diseases

  • Chapter
  • First Online:
Pharmacological Potential of Selected Natural Compounds in the Control of Parasitic Diseases

Abstract

Malaria, trypanosomiasis, and leishmaniasis (neglected tropical diseases), belong to the most devastating diseases affecting humans and animals in developing regions of Asia, Africa, and South America. The drugs, currently used for the treatment of these diseases, are mostly effective; however, some of them have limitations, such as toxic side effects and high cost. Moreover, Plasmodium, Trypanosoma, and Leishmania have developed resistance to many of these drugs. In the first part of this chapter, problems of pathology, therapy, and drug resistance are reviewed. The following part focuses on plants, bacteria, fungi, and marine organisms, which provide invaluable sources of compounds with antiparasitic potential. The compounds isolated from nature are classified according to their chemical structure, and methods for evaluation of their antiparasitic activity are also discussed. The review of promising results, obtained by many investigators from the year 2000 by screening of natural compounds evaluating their antiplasmodial, trypanocidal, and leishmanicidal activity, are presented in the last three parts of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ang KKH, Holmes MJ, Higa T, Hamann MT, Kara UAK (2000) In vivo antimalarial activity of the beta-carboline alkaloid manzamine A. Antimicrob Agents Chemother 44(6):1645–1649. doi: 10.1128/AAC.44.6.1645-1649.2000

    Google Scholar 

  • Anthony JP, Fyfe L, Smith H (2005) Plant active components—a resource for antiparasitic agents? Trends Parasitol 21:462–468. doi:10.1016/j.pt.2005.08.004

    Article  PubMed  CAS  Google Scholar 

  • Arruda DC, D’Alexandri FL, Katzin AM, Uliana SRB (2005) Antileishmanial activity of the terpene nerolidol. Antimicrob Agents Chemother 48:1679–1687. doi: 10.1128/AAC.49.5.1679-1687.2005

    Google Scholar 

  • Barret MP, Vincent IM, Burchmore RJ, Kazibwe AJ, Matovu E (2011) Drug resistance in human African trypanosomiasis. Future Microbiol 6(9):1037–1047. doi:10.2217/fmb.11.88

    Article  Google Scholar 

  • Blumenstiel K, Schoneck R, Yardley V, Croft SL, Krauth-Siegel RL (1999) Nitrofuran drugs as common subversive substrates of Trypanosoma cruzi lipoamide dehydrogenase and trypanothione reductase. Biochem Pharmacol 58:1791–1799

    Google Scholar 

  • Brenzan MA, Nakamura CV, Prado Dias Filho B et al (2007) Antileishmanial activity of crude extract and coumarin from Calophyllum brasiliense leaves against Leishmania amazonensis. Parasitol Res 101:715–722. doi: 10.1007/s00436-007-0542-7

  • Burleigh BA, Woolsey AM (2002) Cell signaling and Trypanosoma cruzi invasion. Cell Microbiol 4:701–711

    Google Scholar 

  • Byadgi PS (2011) Natural products and their antileishmanial activity. A critical review. Int Res J Pharm 2:46–49. http://www.irjponline.com

    Google Scholar 

  • Carvalho PB, Ferreira EI (2001) Leishmaniasis phytotherapy. Nature′s leadership against an ancient disease—review. Fitoterapia 72:599–618

    Google Scholar 

  • Chan-Bacab MJ, Peña-Rodríguez LM (2001) Plant natural products with leishmanicidal activity. Nat Prod Rep 18:674–688. doi:10.1039/B100455G

    Article  PubMed  CAS  Google Scholar 

  • Chawla B, Madhubala R (2010) Drug targets in Leishmania. J Parasit Dis 34:1–13. doi:10.1007/s12639-010-0006-3

    Article  PubMed  Google Scholar 

  • Chen M, Zhai L, Christensen SB, Theander TG, Kharazmi A (2001) Inhibition of fumarate reductase in Leishmania major and L. donovani by chalcones. Antimicrob Agents Chemother 45:2023–2029. doi:10.1128/AAC.45.7.2023-2029.2001

    Article  PubMed  CAS  Google Scholar 

  • Copp RB, Kayser O, Brun R, Kiderlen AF (2003) Antiparasitic activity of marine pyridoacridone alkaloids related to the ascididemins. Planta Med 69:527–531. doi:10.1055/s-2003-40640

    PubMed  CAS  Google Scholar 

  • Coppi A, Cabinian M, Mirelman D, Sinnis P (2006) Antimalarial activity of allicin, a biologically active compound from garlic cloves. Antimicrob Agents Chemother 50:1731–1737. doi:10.1128/AAC.50.5.1731-1737.2006

    Article  PubMed  CAS  Google Scholar 

  • Croft SL, Sundar S, Fairlamb AH (2006) Drug resistance in leishmaniasis. Clin Microbiol Rev 19(1):111–126. doi: 10.1128/CMR.19.1.111–126.2006

    Google Scholar 

  • Cui L, Miao J, Cui L (2007) Cytotoxic effect of curcumin on malaria parasite Plasmodium falciparum: inhibition of histone acetylation and generation of reactive oxygen species. Antimicrob Agents Chemother 51(2):488–494. doi:10.1128/AAC.01238-06

    Article  PubMed  CAS  Google Scholar 

  • Cunha WR, dos Santos FM, Peixoto JA, Veneziani RCS, Crotti AEM, Silva MLA, Filho AAS, Albuquerque S, Turatti ICC, Bastos JK (2009) Screening of plant extracts from the Brazilian Cerrado for their in vitro trypanocidal activity. Pharm Biol (formerly Int J Pharmacognosy) 47:744–749. doi: http://dx.doi.org/10.1080/13880200902951361

    Google Scholar 

  • Das A, Dasgupta A, Sengupta T, Majumder HK (2004) Topoisomerases of kinetoplastid parasites as potential chemotherapeutic targets. Trends Parasitol 20:381–387. doi:10.1016/j.pt.2004.06.005

    Article  PubMed  CAS  Google Scholar 

  • Das BB, Sen N, Roy A, Dasgupta SB, Ganguly A, Mohanta BC, Dinda B, Majumder HK (2006) Differential induction of Leishmania donovani bi-subunit topoisomerase I-DNA cleavage complex by selected flavones and camptothecin: activity of flavones against camptothecin-resistant topoisomerase I. Nucleic Acids Res 34:1121–1132. doi:10.1093/nar/gkj502

    Article  PubMed  CAS  Google Scholar 

  • de Carvalho PB, Ferreira EI (2001) Leishmaniasis phytotherapy. Nature’s leadership against an ancient disease. Fitoterapia 72:599–618

    Google Scholar 

  • de Monbrison F, Maitrejean M, Latour Ch, Bugnazet F, Peyron F, Barron D, Staphane P (2006) In vitro antimalarial activity of flavonoid derivatives dehydrosilybin and 8-(1,1)-DMA-kaempferide. Acta Tropica 97:102–107

    Google Scholar 

  • Delmas F, Di Giorgio C, Elias R et al (2000) Antileishmanial activity of three saponins isolated from ivy, alpha-hederin, beta-hederin and hederacolchiside A1, as compared to their action on mammalian cells cultured in vitro. Planta Med 66:343–347. doi:10.1055/s-2000-8541

    Article  PubMed  CAS  Google Scholar 

  • Di Giorgio C, Delmas F, Akhmedjanova V et al (2005) In vitro antileishmanial activity of diphyllin isolated from Haplophyllum bucharicum. Planta Med 71:366–369

    Google Scholar 

  • Do Socorro SRMS, Mendonca-Filho RR, Bizzo HR et al (2003) Antileishmanial activity of a linalool-rich essential oil from Croton cajucara. Antimicrob Agents Chemother 47:1895–1901. doi: 10.1128/AAC.47.6.1895-1901.2003

  • Dua VK, Verma G, Agarwal DD, Kaiser M, Brun R (2011) Antiprotozoal activities of traditional medicinal plants from the Garhwal region of North West Himalaya, India. J Ethnopharmacol 136:123–128. doi: 10.1016/j.jep.2011.04.024

    Google Scholar 

  • EAC (2012) http://www.eac.int/health/index.php?option=com_content&view=article&id=94%3Acl

  • Eckstein-Ludwig U, Webb RJ, Van Goethem ID, East JM, Lee AG, Kimura M, O’Neill PM, Bray PG, Ward SA, Krishna S (2003) Artemisinins target the SERCA of Plasmodium falciparum. Nature 424:957–961

    Google Scholar 

  • Fattorusso E, Taglialatela-Scafati O (2009) Marine antimalarials. Mar Drugs 7:130–152. doi:10.3390/md7020130

    Article  PubMed  CAS  Google Scholar 

  • Frederich M, Tits M, Angenot L (2008) Potential antimalarial activity of indole alkaloids. Trans R Soc Trop Med Hyg 102:11–19. doi:10.1016/j.trstmh.2007.10.002

    Article  PubMed  CAS  Google Scholar 

  • Fröhlich S, Schubert C, Bienzle U, Jenett-Siems K (2005) In vitro antiplasmodial activity of prenylated chalcone derivatives of hops (Humulus lupulus) and their interaction with haemin. J Antimicrob Chemother 55:883–887. doi:10.1093/jac/dki099

    Article  Google Scholar 

  • Gehrig S, Efferth T (2008) Development of drug resistance in Trypanosoma brucei rhodensiense and Trypanosoma brucei gambiense. Treatment of human African trypanosomiasis with natural products (Review). Int J Mol Med 22:411–419. doi: 0.3892/ijmm_00000037

    PubMed  CAS  Google Scholar 

  • Gelb MH (2007) Drug discovery for malaria: a very challenging and timely endeavor. Curr Opin Chem Biol 11:440–445. doi:10.1016/j.cbpa.2007.05.038

    Google Scholar 

  • Goulart HR, Kimura EA, Peres VJ, Couto AS, Duarte FAA, Katzin AM (2004) Terpenes arrest parasite development and inhibit biosynthesis of isoprenoids in Plasmodium falciparum. Antimicrob Agents Chemother 48:2502–2509. doi: 10.1128/AAC.48.7.2502–2509.2004

  • Hoet S, Opperdoes F, Brun R, Quetin-Leclercq J (2004) Natural products active against African trypanosomes: a step towards new drugs. Nat Prod Rep 21:353–364

    Google Scholar 

  • Jeong HG, Choi CY (2002) Expression of inducible nitric oxide synthase by alpha-hederin in macrophages. Planta Med 68:392–396

    Google Scholar 

  • Kaur K, Jain M, Kaur T, Jain R (2009): Antimalarials from nature. Bioorg Med Chem 17:3229–3256

    Google Scholar 

  • Kayser O, Kiderlen AF, Bertels S, Siems K (2001) Antileishmanial activities of aphidicolin and its semisynthetic derivatives. Antimicrob Agents Chemother 45:288–292. doi:10.1128/AAC.45.1.288-292.2001

    Article  PubMed  CAS  Google Scholar 

  • Kayser O, Kiderlen AF, Croft SL (2002) Natural products as potential antiparasitic drugs. In Studies in Natural Product Chemistry 26, pp 779–848. Elsevier, UK. http://userpage.fu-berlin.de/~kayser/antiparasiticsfromnature.pdf

  • Kayser O, Kiderlen AF, Croft SL (2003) Natural products as antiparasitic drugs. Parasitol Res 90:S55–S62. doi:10.1007/s00436-002-0768-3

    Article  PubMed  Google Scholar 

  • Kothari H, Kumar P, Sundar S, Singh N (2007) Possibility of membrane modification as a mechanism of antimony resistance in Leishmania donovani. Parasitol Int 56(1):77–80. http://dx.doi.org/10.1016/j.parint.2006.10.005

    Google Scholar 

  • Laport MS, Santos OCS, Muricy G (2009) Marine sponges: potential sources of new antimicrobial drugs. Curr Pharm Biotechnol 10:86–105

    Google Scholar 

  • Laurent D, Pietra F (2006) Antiplasmodial marine natural products in the perspective of current chemotherapy and prevention of malaria. A review. Mar Biotechnol 8:433–447. doi:10.1007/s10126-006-6100-y

    Article  PubMed  CAS  Google Scholar 

  • Laurent D, Jullian V, Parenty A, Knibiehler M, Dorin D, Schmitt S, Lozach O, Lebouvier N, Frostin M, Alby F, Maurel S, Doerig C, Meijerf M, Sauvain M (2006) Antimalarial potential of xestoquinone, a protein kinase inhibitor isolated from a Vanuatu marine sponge Xestospongia sp. Bioorg Med Chem 14:4477–4482. doi:10.1016/j.bmc.2006.02.026

    Article  PubMed  CAS  Google Scholar 

  • Le Pape P, Zidane M, Abdala H, Moré MT (2000) A glycoprotein isolated from the sponge, Pachymatisma johnstonii, has anti-leishmanial activity. Cell Biol Int 24:51–56. doi:10.1006/cbir.1999.0450

    Article  PubMed  Google Scholar 

  • Lopes NP, Kato MJ, Andrade EH, Maia JG, Yoshida M, Planchart AR, Katzin AM (1999) Antimalarial use of volatile oil from leaves of Virola surinamensis (Rol.) Warb. by Waiapi Amazon Indians. J Ethnopharmacol 67:313–319. http://dx.doi.org/10.1016/S0378-8741(99)00072-0

    Google Scholar 

  • Ma Y, Lu DM, Lu XJ, Lia L, Hu XS (2004) Activity of dihydroartemisinin against Leishmania donovani both in vitro and in vivo. Chin Med J 117:1271–1273

    Google Scholar 

  • Malebo HM, Tanja W, Cal M, Swaleh SAM, Omolo MO, Hassanali A, Séquin U, Hamburger M, Brun R, Ndiege IO (2009) Antiplasmodial, anti-trypanosomal, anti-leishmanial and cytotoxicity activity of selected Tanzanian medicinal plants. Tanzan J Health Res 11(4):2266–2234

    Google Scholar 

  • Maltezou HC (2010) Drug resistance in visceral leishmaniasis. J Biomed Biotechnol 2010:617521. doi: 10.1155/2010/617521

  • Maya JD, Cassels BK, Iturriaga-Vásquez P, Ferreira J, Faúndez M, Galanti N, Ferreira A, Morello A (2007) Mode of action of natural and synthetic drugs against Trypanosoma cruzi and their interaction with the mammalian host. Comp Biochem Physiol Part A 146:601–620. doi:10.1016/j.cbpa.2006.03.004

    Article  Google Scholar 

  • Mendiola J, Hernández H, Sariego I, Rojas L, Otero A, Ramírez A, Chávez MA, Payrol JA (2006) Antimalarial activity from three ascidians: an exploration of different marine invertebrate phyla. Trans R Soc Trop Med Hyg 100:909–915. doi:10.1016/j.trstmh.2005.11.013

    Article  PubMed  CAS  Google Scholar 

  • Mishina YV, Krishna S, Haynes RK, Meade JC (2007) Artemisinins inhibit Trypanosoma cruzi and Trypanosoma brucei rhodesiense in vitro growth. Animicrob Agents Chemother 51(5):1852–1854. doi:10.1128/AAC.01544-06

    Article  CAS  Google Scholar 

  • Mittal MK, Rai S, Ravinger A, Gupta S, Sundar S, Goyal N (2007) Characterization of natural antimony resistance in Leishmania donovani isolates. Am J Trop Med Hyg 76(4):681–688

    Google Scholar 

  • Mittra B, Saha A, Chowdhury AR et al (2000) Luteolin, an abundant dietary component is a potent anti-leishmanial agent that acts by inducing topoisomerase II-mediated kinetoplast DNA cleavage leading to apoptosis. Mol Med 6:527–541

    Google Scholar 

  • Mizuno Y, Makioka A, Kawazu S, Kano S, Kawai S, Akaki M, Aikawa M, Ohtomo H (2002) Effect of jasplakinolide on the growth, invasion, and actin cytoskeleton of Plasmodium falciparum. Parasitol Res 88:844–848. doi:10.1007/s00436-002-0666-8

    Article  PubMed  Google Scholar 

  • Monzote L (2009) Current treatment of leishmaniasis: a review. Open Antimicrob Agents J 1:9–19

    Google Scholar 

  • Muhammad I, Bedir E, Khan SI, Tekwani BL, Khan IA, Takamatsu S, Pelletier J, Walker LA (2004) A new antimalarial quassinoid from Simaba orinocensis. J Nat Prod 67:772–777

    Google Scholar 

  • Mukherjee A, Padmanabhan PK, Singh S et al (2007) Role of ABC transporter MRPA, γ-glutamylcysteine synthetase and ornithine decarboxylase in natural antimony-resistant isolates of Leishmania donovani. J Antimicrob Chemother 59(2):204–211. doi:10.1093/jac/dkl494

    Article  PubMed  CAS  Google Scholar 

  • Muthaura CN, Rukunga GM, Chhabra SC, Omar SA, Guantai AN, Gathirwa JW, Tolo FM, Mwitari PG, Keter LK, Kirira PG, Kimani CW, Mungai GM, Njagi EN (2007) Antimalarial activity of some plants traditionally used in Meru district of Kenya. Phytother Res 21:860–867. doi:10.1002/ptr.2170

    Article  PubMed  CAS  Google Scholar 

  • Muthaura CN, Keriko JM, Derese S, Yenesew A, Rukunga GM (2011) Investigation of some medicinal plants traditionally used for the treatment of malaria in Kenya as potential sources of antmalarial drugs. Exp Parasitol 127:609–626. doi:10.1016/j.exppara.2010.11.004

    Article  PubMed  CAS  Google Scholar 

  • Mwangi ESK, Keriko JM, Machocho AK, Wanyonyi AW, Malebo HM, Chhabra SC, Tarus PK (2010) Antiprotozoal activity and cytotoxicity of metabolites from leaves of Teclea trichocarpa. J Med Plants Res 4(9):726–731. doi:10.5897/JMPR09.188

    CAS  Google Scholar 

  • Plock A, Sokolowska-Köhler W, Presber W (2001) Application of flow cytometry and microscopical methods to characterize the effect of herbal drugs on Leishmania spp. Exp Parasitol 97:141–153. doi:10.1006/expr.2001

    Article  PubMed  CAS  Google Scholar 

  • Polonio T, Efferth T (2008) Leishmaniasis: drug resistance and natural products (Review). Int J Mol Med 22:277–286

    Google Scholar 

  • Rocha LG, Almeida JRGS, Macedo RO, Barbosa-Filho JM (2005) A review of natural products with antileishmanial activity. Phytomedicine 12:514–535. doi:10.1016/j.phymed.2003.10

    Article  PubMed  CAS  Google Scholar 

  • Rosa MSS, Mendonça-Filho RR, Bizzo HR, de Almeida RI, Soares RM, Souto-Padrón T, Alviano CS, Lopes AH (2003) Antileishmanial activity of linalool-rich essential oil from Croton cajucara. Antimicrob Agents Chemother 47:1895–1901. doi:10.1128/AAC.47.6.1895-1901.2003

    Article  CAS  Google Scholar 

  • Salas C, Tapia RA, Ciudad K, Armstrong V, Orellana M, Kemmerling U, Ferreira J, Maya JD, Morello A (2008) Trypanosoma cruzi: activities of lapachol and alpha- and beta-lapachone derivatives against epimastigote and trypomastigote forms. Bioorg Med Chem 16:668–674

    Google Scholar 

  • Salas CO, Faúndez M, Morello A, Maya JD, Tapia RA (2011) Natural and synthetic naphthoquinones active against Trypanosoma Cruzi: an initial step towards new drugs for Chagas disease. Curr Med Chem 18:144–161

    Google Scholar 

  • Salem MM, Werbovetz KA (2006) Natural products from plants as drug candidates and lead compounds against leishmaniasis and trypanosomias. Curr Med Chem 13:2571–2598

    Google Scholar 

  • Sanchez AM, Jimenez-Ortiz V, Sartor T, Tonn CE, García EE, Nieto M, Burgos MH, Sosa MA (2006) A novel icetexane diterpene, 5-epi-icetexone from Salvia gilliessi is active against Trypanosoma cruzi. Acta Trop 98:118–124. doi:10.1016/j.actatropica.2005.12.007

    Article  PubMed  CAS  Google Scholar 

  • Saxena S, Pant N, Jain DC, Bhakuni RS (2006) Antimalarial agents from plant sources. Curr Sci 85:1314–1329

    Google Scholar 

  • Schmidt TJ, Brun R, Willuhn G, Khalid SA (2002) Anti-trypanosomal activity of helenalin and some structurally related sesquiterpene lactones. Planta Med 68:750–751. doi:10.1055/s-2002-33799

    Article  PubMed  CAS  Google Scholar 

  • Schmidt TJ, Khalid SA, Romanha AJ, Alves TM, Biavatti MW, Brun R, Da Costa FB, de Castro SL, Ferreira VF, de Lacerda MV, Lago JH, Leon LL, Lopes NP, das Neves Amorim RC, Niehues M, Ogungbe IV, Pohlit AM, Scotti MT, Setzer WN, de N C Soeiro M, Steindel M, Tempone AG (2012a) The potential of secondary metabolites from plants as drugs or leads against protozoan neglected diseases—part I. Curr Med Chem 19:2128–2175

    Google Scholar 

  • Schmidt TJ, Khalid SA, Romanha AJ, Alves TM, Biavatti MW, Brun R, Da Costa FB, de Castro SL, Ferreira VF, de Lacerda MV, Lago JH, Leon LL, Lopes NP, das Neves Amorim RC, Niehues M, Ogungbe IV, Pohlit AM, Scotti MT, Setzer WN, de N C Soeiro M, Steindel M, Tempone AG (2012b) The potential of secondary metabolites from plants as drugs or leads against protozoan neglected diseases—part II. Curr Med Chem 19:2176–2228

    Google Scholar 

  • Steverding D, Tyler KM (2005) Novel antitrypanosomal agents. Expert Opin Investig Drugs 14:939–955. doi:10.1517/13543784.14.8.939

    Article  PubMed  CAS  Google Scholar 

  • Taleb-Contini SH, Salvador MJ, Balanco JMF, Albuquerque S, de Oliveira DCR (2004) Antiprotozoal effect of crude extracts and flavonoids isolated from Chromolaena hirsuta (Asteraceae). Phytother Res 18:250–254. doi:10.1002/ptr.1431

    Article  PubMed  CAS  Google Scholar 

  • Tasdemir D, Brun R, Perozzo R, Dönmez AA (2005) Evaluation of antiprotozoal and plasmodial enoyl-ACP reductase inhibition potential of Turkish medicinal plants. Phytother Res 19:162–166. doi:10.1002/ptr.1648

    Article  PubMed  CAS  Google Scholar 

  • Tasdemir D, Kaiser M, Brun R,Yardley V, Schmidt TJ, Tosun F, Rüedi P (2006) Antitrypanosomal and antileishmanial activities of flavonoids and their analogues: in vitro, in vivo, structure-activity relationship, and quantitative structure-activity relationship studies. Antimicrob Agents Chemother 50:1352–1364. doi: 10.1128/AAC.50.4.1352-1364.2006

    Google Scholar 

  • Taylor WR, White NJ (2004) Antimalarial drug toxicity: a review. Drug Saf 27:25–61

    Google Scholar 

  • Tempone AG, Sartorelli P, Teixeira D, Prado FO, Calixto IARL, Lorenzi H, Melhem MSC (2008) Brazilian flora extracts as source of novel antileishmanial and antifungal compounds. Mem Inst Oswaldo Cruz 103:443–449

    Google Scholar 

  • Thomas TRA, Kavlekar DP, LokaBharathi PA (2010) Marine drugs from sponge-microbe association—a review. Mar Drugs 8:1417–1468. doi:10.3390/md8041417

    Article  PubMed  CAS  Google Scholar 

  • van Agtmael MA, Eggelte TA, van Boxtel SJ (1999) Artemisinin drugs in the treatment of malaria: from medicinal herb to registered medication. Trends Pharmacol Sci 20:199–205. doi:10.1016/S0165-6147(99)01302-4

    Article  PubMed  Google Scholar 

  • Varughese G, Sabulal B, Anil J (2010) Ethnomedicinal plants in parasitic infections. In: Chattopadhyay D (ed) Ethnomedicine: a source of complementary therapeutics, pp 53–116, ISBN 978-81-308-0390-6

    Google Scholar 

  • Vonthron-Sénécheau C, Weniger B, Ouattara M, Tra Bi F, Kamenan A, Lobstein A, Brun R, Anton R (2003) In vitro antiplasmodial activity and cytotoxicity of ethnobotanically selected Ivorian plants. J Ethnopharmacol 87:221–225. doi: 10.1016/S0378-8741(03)00144-2

    Google Scholar 

  • Weiss CR, Moideen SVK, Simon L, Croft SL, Peter J, Houghton PJ (2000) Activity of extracts and isolated naphthoquinones from Kigelia pinnata against Plasmodium falciparum. J Nat Prod 63(9):1306–1309. doi: 10.1021/np000029g

  • White NJ (2004) Antimalarial drug resistance. J Clin Invest 113:1084–1092. doi:10.1172/JCI200421682

    PubMed  CAS  Google Scholar 

  • WHO (2001) Antimalarial drug combination therapy: report of a WHO technical consultation. In WHO/CDS/RBM, vol 2001.35. World Health Organization, Geneva

    Google Scholar 

  • WHO (2002) The world health report 2002: reducing risks, promoting healthy life. World Health Organization, Geneva

    Google Scholar 

  • Wilkinson SR, Kelly JM (2009) Trypanocidal drugs: mechanisms, resistance and new targets. Expert Rev Mol Med 11:1–31. doi: http://dx.doi.org/10.1017/S1462399409001252

    Google Scholar 

  • Wong IL, Chan K-F, Burkett BA et al (2007) Flavonoid dimers as bivalent modulators for pentamidine and sodium stiboglucanate resistance in Leishmania. Antimicrob Agents Chemother 51(3):930–940. doi: 10.1128/AAC.00998-06

  • Woodrow CJ, Haynes RK, Krishna S (2005) Artemisinins. Postgrad Med J 81:71–78. doi:10.1136/pgmj.2004.028399

    Article  PubMed  CAS  Google Scholar 

  • Woster PM (2009) Principles of pharmacotherapy 3: infectious diseases and disease of the respiratory tract. In Chemistry of antiparasitic agents. http://www.acsmedchem.org/module/antiparasitic.html

  • Wright CW (2005) Traditional antimalarials and the development of novel antimalarial drugs. J Ethnopharmacol 100:67–71. doi: 10.1016/j.jep.2005.05.012

    Google Scholar 

  • Wright AD, Papendorf O, Konig GM (2005) Ambigol C and 2,4-dichlorobenzoic acid, natural products produced by the terrestrial cyanobacterium Fischerella ambigua. J Nat Prod 68:459–461. doi:10.1021/np049640w

    Article  PubMed  CAS  Google Scholar 

  • Yabu Y, Yoshida A, Suzuki T et al (2003) The efficacy of ascufuranone in a consecutive treatment on Trypanosoma brucei brucei in mice. Parasitol Int 52:155–164. doi:10.1016/S1383-5769(03)00012-6

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, An R, Wang J, Sun N, Zhang S, Hu J, Kuai J (2005) Exploring novel bioactive compounds from marine microbes. Curr Opin Microbiol 8:276–281. doi:10.1016/j.mib.2005.04.008

    Article  PubMed  CAS  Google Scholar 

  • Ziegler HL, Hansen HS, StÅ“rk D, Christensen SB, Hägerstrand H, Jaroszewski JW (2004) The antiparasitic compound licochalcone A is a potent echinocytogenic agent that modifies the erythrocyte membrane in the concentration range where antiplasmodial activity is observed. Antimicrob Agents Chemother 48:4067–4071. doi:10.1128/AAC.48.10.4067-4071.2004

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela Hrckova .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Hrckova, G., Velebny, S. (2013). Pharmacological Potential of Natural Compounds in the Control of Selected Protozoan Diseases. In: Pharmacological Potential of Selected Natural Compounds in the Control of Parasitic Diseases. SpringerBriefs in Pharmaceutical Science & Drug Development. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1325-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1325-7_1

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1324-0

  • Online ISBN: 978-3-7091-1325-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics